强化学习:结合策略梯度与Q学习
在强化学习领域,不同的学习方法各有优劣。Q学习和策略梯度方法是两种重要的学习方式,下面将详细探讨它们的特点、权衡以及如何将二者结合以发挥更大优势。
1. Q学习与策略梯度方法的特点
Q学习是一种离策略(off-policy)方法,通过探索性行为策略收集转移数据,然后利用这些数据进行批量随机梯度更新来学习Q值。在学习Q值的过程中,通过对某个状态下所有可能动作的Q值取最大值来选择最佳动作,从而改进策略。其更新公式如下:
[
w_{t+1} = w_t + \frac{1}{N} \sum_{i=1}^{N} \left[ r_i + \gamma \max_{a’} \hat{q}(s_{i+1}, a’; w_t) - \hat{q}(s_i, a_i; w_t) \right] \nabla_w \hat{q}(s_i, a_i; w_t)
]
Q学习具有样本效率高的优点,因为可以通过回放缓冲区重用转移数据。然而,它也存在一些问题:
- 连续动作处理困难 :在连续动作空间中,对所有可能动作的Q值取最大值是一个昂贵的过程,需要运行额外的优化算法。
- 学习目标间接 :不是直接学习最优策略,而是先学习动作值函数,再通过取最大值来确定最优动作。
- 稳定性问题 :缺乏理论保证,使用半梯度更新可能导致学习不稳定,平均奖励的进展图可能不连续,需要仔细调整超参数。
- 确定性策略限制 :学习的是确定性策略,而在某些情况下,如机器人操作,一定程