丧尸225
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
29、强化学习的前沿探索:从进化策略到元学习
本博客深入探讨了强化学习的前沿主题,包括进化策略方法的高效并行性和探索行为优势,迁移学习与多任务学习的知识复用策略,以及元学习如何使智能体实现快速适应与跨领域学习。此外,还介绍了常用的强化学习工具库和继续学习的建议,为深入探索强化学习领域提供了全面指导。原创 2025-09-04 06:50:45 · 4 阅读 · 0 评论 -
28、强化学习中的多种方法与策略
本博文探讨了强化学习中的多种方法与策略,包括基于模型的强化学习与无模型微调(MBMF)、基于模型的值扩展(MBVE)、模仿学习与逆强化学习,以及无导数方法如交叉熵方法、CMA-ES和进化策略(ES)。每种方法的特点、适用场景及局限性均进行了详细分析,并结合实际应用案例和未来发展趋势,为不同问题场景下方法的选择和优化提供了指导建议。原创 2025-09-03 13:27:40 · 4 阅读 · 0 评论 -
27、强化学习前沿技术与应用解析
本文深入解析了强化学习的前沿技术与应用,重点剖析了AlphaGo的技术实现,包括其策略网络和价值网络的结合以及蒙特卡罗树搜索的应用。同时,详细探讨了强化学习模型结合方法,如世界模型和想象增强代理(I2A),并对比分析了Dyna、世界模型和I2A的特点与适用场景。文章还展望了强化学习的未来发展趋势,包括与其他技术的深度融合、多智能体强化学习、可解释性强化学习以及自适应强化学习的发展。通过本文,读者可以全面了解强化学习的核心技术与应用前景。原创 2025-09-02 15:02:10 · 6 阅读 · 0 评论 -
26、强化学习中的探索与规划策略深入解析
本博客深入解析了强化学习中的探索与规划策略,重点讨论了探索与利用的权衡、常见的探索策略(如ε-贪婪、UCB和汤普森采样),并引入了决策时规划方法——蒙特卡罗树搜索(MCTS)。通过理论分析、代码实现与实验比较,展示了不同策略的特点和适用场景,并结合实际应用案例和未来展望,为强化学习中的智能决策提供了全面的指导。原创 2025-09-01 10:36:37 · 5 阅读 · 0 评论 -
25、强化学习中的学习与规划整合:从Dyna到算法统一
本文探讨了强化学习中学习与规划的整合,从使用学习模型进行规划的基本方法入手,深入介绍了Dyna架构及其代表算法Dyna Q。文章分析了Dyna Q在动态变化环境中的局限性,并进一步介绍了改进的Dyna Q+算法。通过价值函数的不同更新方式,文章展示了动态规划与无模型强化学习之间的联系,并提出了强化学习算法的二维视角以及更多维度的统一方式。最后,文章讨论了强化学习算法统一的意义、应用场景以及未来发展方向,旨在为复杂现实问题提供更高效的解决方案。原创 2025-08-31 12:20:30 · 4 阅读 · 0 评论 -
24、强化学习:从连续控制到集成规划
本博客深入探讨了软演员-评论家算法(SAC)及其在连续控制任务中的应用,详细分析了SAC与TD3的异同、熵正则化机制以及代码实现。同时,博客还介绍了集成规划与学习的方法,结合基于模型和无模型的强化学习技术,提升算法的样本效率和性能。最后,针对探索与利用这一核心问题,讨论了其困境及解决方法,如蒙特卡罗树搜索(MCTS)。这些内容为强化学习在复杂任务中的应用提供了理论基础和实践指导。原创 2025-08-30 10:45:44 · 3 阅读 · 0 评论 -
23、深入探索TD3算法及相关技术
本博客深入探讨了TD3算法及其相关技术,重点介绍了其对DDPG算法的改进,包括Clipped double Q-learning、延迟策略更新和目标策略平滑。此外,还详细分析了重参数化技巧在降低策略梯度方差中的作用,以及熵在强化学习中的重要性。通过这些技术,TD3算法在复杂环境中表现出更强的稳定性和收敛速度,为后续的软演员-评论家(SAC)算法奠定了基础。原创 2025-08-29 13:19:52 · 3 阅读 · 0 评论 -
22、深度确定性策略梯度(DDPG)算法代码实现详解
本文详细解析了深度确定性策略梯度(DDPG)算法的代码实现,包括策略网络(Actor)和Q网络(Critic)的构建、损失计算、单步更新以及主循环逻辑。代码分别使用PyTorch和TensorFlow 2.0框架实现,并在Pendulum-v0和LunarLanderContinuous-v2两个Gym环境中进行了验证。文章还提供了代码结构分析、优化建议、扩展方向以及常见问题的解决方案,帮助读者更好地理解和应用DDPG算法。原创 2025-08-28 13:14:55 · 2 阅读 · 0 评论 -
21、强化学习:结合策略梯度与Q学习
本文探讨了强化学习中策略梯度与Q学习的结合方法,详细分析了它们各自的优缺点,并介绍了DDPG、TD3和SAC三种主流算法。这些方法通过结合策略梯度的直接策略优化和Q学习的高效价值估计,有效解决了连续动作空间中的学习难题。文章还比较了不同算法的特点,为实际应用提供了选择指南。原创 2025-08-27 10:11:43 · 1 阅读 · 0 评论 -
20、强化学习中的策略梯度算法详解
本文详细解析了强化学习中的策略梯度算法,涵盖A2C、A3C、TRPO和PPO等主流方法的原理、实现与应用。通过对比分析,帮助读者理解不同算法的优劣势,并提供实际案例和未来趋势展望,为选择合适算法解决实际问题提供指导。原创 2025-08-26 09:21:16 · 4 阅读 · 0 评论 -
19、策略梯度算法的优化与实现
本文详细介绍了策略梯度算法的优化与实现,包括策略梯度的基本概念、伪损失的作用、基于回报到未来的方差减少方法以及引入熵正则化和基线的改进策略。文章还详细讲解了REINFORCE算法在CartPole问题上的实现步骤,并进一步介绍了Actor-Critic方法的基本思想与实现方式。通过结合策略梯度与价值函数估计,Actor-Critic方法有效降低了策略梯度更新的方差,提高了学习效率和收敛速度。最后对不同算法的优缺点进行了对比总结,为强化学习中的策略优化提供了系统性的指导。原创 2025-08-25 09:40:14 · 3 阅读 · 0 评论 -
18、策略梯度算法详解
本博客详细解析了策略梯度算法的基本原理及其应用,包括随机策略与确定性策略的区别、策略梯度的数学推导过程,以及REINFORCE算法的实现流程。通过示例和代码伪代码展示了算法在实际问题中的应用,并分析了策略梯度方法的优缺点和改进方向。内容适合对强化学习感兴趣的读者深入学习和实践参考。原创 2025-08-24 11:19:45 · 2 阅读 · 0 评论 -
17、深度强化学习中的DQN变体及策略梯度算法
本文深入探讨了深度强化学习中的关键算法,重点介绍了深度Q网络(DQN)的多种变体,如Categorical 51-Atom DQN(C51)、分位数回归DQN(QR-DQN)以及后视经验回放(HER)技术。同时,文章详细解析了策略梯度算法的基本原理、数学推导及其实现应用,并进一步探讨了策略梯度与基于值方法的结合,包括演员-评论家算法(Actor-Critic)和优势演员-评论家算法(A2C)。这些方法在不同场景中展现了各自的优势,为解决复杂强化学习问题提供了多样化的选择。原创 2025-08-23 15:21:00 · 3 阅读 · 0 评论 -
16、深度Q学习的多种变体技术解析
本博客深入解析了深度Q学习的多种变体技术,包括优先回放、双Q学习、决斗DQN和噪声网络DQN。每种技术的核心思想、优势和适用场景都被详细阐述,并提供了相应的代码实现和对比总结,帮助读者更好地理解和应用这些技术,以提升强化学习智能体的性能。原创 2025-08-22 16:07:13 · 2 阅读 · 0 评论 -
15、深度Q学习:从基础到优化
本文介绍了深度Q学习(DQN)的基本原理及其在Atari游戏中的应用。详细讲解了如何对游戏图像进行预处理,构建适合DQN的神经网络结构,并提供了PyTorch和TensorFlow两种框架的实现代码。此外,还深入探讨了优先回放机制的原理与实现,包括重要性采样、TD误差计算和损失校正方法,以提升DQN的学习效率和性能。最后总结了DQN的关键要点,并展望了未来的研究方向和实践建议。原创 2025-08-21 13:40:41 · 3 阅读 · 0 评论 -
14、深度Q学习:原理、实现与训练
本文深入介绍了深度Q网络(DQN)的原理、实现与训练过程,并以CartPole问题为例展示了如何构建DQN智能体。文章详细讲解了Q学习与神经网络的结合方式、经验回放缓冲区的作用以及训练过程中损失函数的优化方法。同时,还探讨了DQN的多种改进方法,包括双DQN、优先经验回放和决斗网络架构,分析了它们的核心思想与实现思路。通过这些内容,读者可以全面了解DQN的基本原理及其在实际问题中的应用方式。原创 2025-08-20 16:32:27 · 5 阅读 · 0 评论 -
13、强化学习中的函数逼近与算法分析
本文探讨了强化学习中的函数逼近方法及其在不同场景下的应用与效果。重点分析了增量方法(如半梯度SARSA(λ)和梯度时间差分学习)、批量方法(如深度Q网络DQN)以及线性最小二乘法(如LSMC、LSTD和LSPI)的原理、实现和收敛性。文章还讨论了函数逼近在实际应用中面临的挑战,包括收敛性问题和样本效率问题,并介绍了深度学习库(如PyTorch和TensorFlow)在函数逼近中的作用。最后,展望了强化学习未来的发展方向,包括提高样本效率、处理复杂环境以及结合其他技术等。原创 2025-08-19 16:05:38 · 2 阅读 · 0 评论 -
12、强化学习中的函数逼近技术详解
本文详细介绍了强化学习中的函数逼近技术,包括泛化控制与形状选择、瓦片编码方法、逼近中的挑战、增量预测(MC、TD、TD(λ))、增量控制、半梯度N步SARSA控制等核心内容。通过代码实现和流程分析,展示了如何在实际问题中应用这些技术进行状态值估计和策略优化,并总结了注意事项与实际应用建议,帮助读者更好地理解和应用强化学习中的函数逼近方法。原创 2025-08-18 14:48:22 · 2 阅读 · 0 评论 -
11、强化学习中的模型自由方法与函数逼近
本博客深入探讨了强化学习中的模型自由方法与函数逼近技术。内容涵盖重要性采样、资格迹与TD(λ)算法、DP、MC和TD方法的比较,以及函数逼近的理论基础与常见方法,包括线性组合(粗编码、瓦片编码)、非线性方法(神经网络)等。同时分析了函数逼近中的收敛和稳定性问题,并提出了相应的解决措施,如经验回放、目标网络和正则化。最后介绍了深度学习基础及其在强化学习中的应用,并展示了使用PyTorch和TensorFlow构建模型的基本流程。原创 2025-08-17 15:01:48 · 2 阅读 · 0 评论 -
10、强化学习中的Q学习及相关方法详解
本博客详细解析了强化学习中的Q学习及其相关方法,包括Q学习的基本原理、最大化偏差问题与双学习解决方案、期望SARSA控制算法、经验回放缓冲区的应用、连续状态空间的处理、n步回报方法等内容。通过Python代码实现与悬崖世界、CartPole等环境的实验分析,比较了Q学习、SARSA和期望SARSA的性能差异,并提供了实际应用建议与未来研究方向。适合对强化学习感兴趣的读者深入学习与实践参考。原创 2025-08-16 16:01:42 · 5 阅读 · 0 评论 -
9、强化学习中的策略与时间差分方法
本博客深入探讨了强化学习中的策略学习与时间差分(TD)方法,涵盖了在线策略与离线策略的区别,以及多种关键算法如SARSA、Q-学习、期望SARSA和双Q-学习的原理与实现。此外,还介绍了经验回放、TD(λ) 和连续状态空间处理技术,旨在帮助读者全面理解并应用这些方法解决实际问题。原创 2025-08-15 09:30:49 · 4 阅读 · 0 评论 -
8、无模型强化学习方法:蒙特卡罗方法详解
本文详细介绍了无模型强化学习中的蒙特卡罗方法,包括其在策略评估和策略控制中的应用。文章解释了首次访问MC和每次访问MC的核心思想,并通过Python代码展示了其实现。同时,讨论了蒙特卡罗方法的偏差与方差问题,以及如何结合探索性策略和贪婪策略进行策略优化。此外,还扩展了n步返回、重要性采样等进阶技术,并结合21点游戏和机器人路径规划等实际案例,展示了蒙特卡罗方法的实际应用价值。原创 2025-08-14 09:50:23 · 3 阅读 · 0 评论 -
7、基于模型的算法:策略改进与迭代
本文详细介绍了基于模型的强化学习算法中的策略改进与迭代方法,包括策略迭代、值迭代、广义策略迭代和异步备份等核心技术。通过理论分析和代码实现,深入探讨了如何在给定环境中改进策略并收敛到最优策略。同时,对比了策略迭代与值迭代的性能差异,并总结了同步与异步动态规划算法的适用场景及局限性。最后,展望了未来可能的研究方向。原创 2025-08-13 12:22:36 · 4 阅读 · 0 评论 -
6、基于模型的强化学习算法与动态规划
本文深入探讨了基于模型的强化学习算法与动态规划的核心概念和实现方法。内容涵盖过渡动态、策略评估与改进、广义策略迭代(GPI)等关键理论,并结合OpenAI Gym创建了一个4x4网格世界环境,通过代码演示了动态规划在状态值计算和策略优化中的应用。同时分析了动态规划在实际应用中的优势与挑战,如维度灾难和模型不确定性,并提出了相应的解决方案。适合对强化学习基础理论和实现方法感兴趣的读者。原创 2025-08-12 13:47:54 · 2 阅读 · 0 评论 -
5、强化学习中的马尔可夫决策过程详解
本文详细介绍了强化学习中的核心概念——马尔可夫决策过程(MDP),包括策略、状态与行动价值函数、贝尔曼方程及其最优性方程。同时,文章还分析了不同类型的强化学习算法,如基于模型的算法和无模型算法,并探讨了它们的特点、适用场景以及选择合适算法的步骤。通过理论与实例相结合的方式,为理解和应用强化学习提供了全面的指导。原创 2025-08-11 15:08:12 · 2 阅读 · 0 评论 -
4、强化学习中的奖励与马尔可夫过程解析
本博客深入解析了强化学习中的核心概念——奖励设计与马尔可夫过程。从奖励的作用与设计示例出发,探讨了其在智能体决策中的重要性,并详细介绍了马尔可夫链、马尔可夫奖励过程和马尔可夫决策过程的数学原理与实际应用。通过电动面包车等案例分析,展示了马尔可夫决策过程在动态环境中的决策机制,最后讨论了实际应用中的挑战与应对策略,为理解和应用强化学习提供了理论基础与实践指导。原创 2025-08-10 10:15:58 · 1 阅读 · 0 评论 -
3、强化学习基础与实践
本博客全面介绍了强化学习的基础理论与实践应用。内容涵盖强化学习的基本概念、与监督学习和无监督学习的对比,以及智能体与环境的交互机制。博客深入探讨了马尔可夫决策过程(MDP)、状态与动作价值函数的作用,以及贝尔曼方程的数学表达和意义。同时,还介绍了基于模型和无模型的学习算法,如动态规划、Q-learning和SARSA,并结合OpenAI Gym库演示了MountainCar和CartPole等经典环境的代码实现。最后,博客展望了强化学习的未来发展方向,包括深度强化学习在复杂任务中的应用潜力。原创 2025-08-09 12:20:44 · 1 阅读 · 0 评论 -
2、机器学习分支与强化学习全解析
本文详细解析了机器学习的三大分支:监督学习、无监督学习和强化学习,重点探讨了强化学习的核心元素、应用场景及未来发展。文章介绍了强化学习的基本流程、与深度学习的结合,以及在自动驾驶、机器人、推荐系统等多个领域的应用案例。此外,还提供了搭建强化学习开发环境的完整步骤,帮助读者快速进入实践环节。最后展望了强化学习的技术趋势、应用拓展及面临的挑战。原创 2025-08-08 15:14:55 · 3 阅读 · 0 评论 -
1、强化学习入门
本博客从强化学习的基本概念入手,介绍了智能与人工智能的定义以及强化学习的起源,详细讲解了强化学习的核心元素及其与深度学习的结合方式。同时,还涵盖了强化学习在自动驾驶、机器人、推荐系统、金融交易、医疗保健和游戏等多个领域的实际应用案例,并提供了搭建强化学习开发环境的相关步骤。适合对强化学习感兴趣的初学者和研究者参考学习。原创 2025-08-07 12:35:35 · 2 阅读 · 0 评论