十三、高光谱图像基础

本文介绍了高光谱图像的基础知识,包括其成像原理、光谱分辨率以及与RGB和全色图像的区别。高光谱图像通过分析不同波段的光谱数据,提供丰富的光谱域和空间域信息,广泛应用于物体分类、识别和定量分析。文章还列举了多个高光谱图像数据集,如USGS农作物库、Indian Pines、Pavia University等,这些数据集常用于高光谱图像处理的研究和实验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1、各种图像
1.1 高光谱图像
    高光谱成像技术的原理基于物体的光谱吸收和反射特性。当光线通过或反射于物体表面时,被物体吸收或反射的光波将发生变化。高光谱成像系统通过对各个波段的频谱进行连续测量,可以获取到物体在不同波段下的光谱信息。通过分析这些光谱数据,我们可以获取到物体的光谱特征,进而对物体进行分类、识别和定量分析。
    光谱分辨率在10-2λ数量级范围内的光谱图像称为高光谱图像(Hyperspectral Image)。形成的数据可以用“三维数据块”来形象地描述。其中x和y表示二维平面像素信息坐标轴,第三维(λ轴)是波长信息坐标轴。按照成像传感器波谱通道划分数目的多少,分为多光谱、高光谱和超光谱。通常认为,多光谱波段数目在100以下,高光谱波段数目在100~10000之间,超光谱波段数目在10000以上。也就是一个波段对应一个通道,每一个通道捕捉指定波长的光。
    高光谱图像就是好多个灰度图像叠加到一起,每一个灰度图代表了一个光谱波段。255*255*200,可以理解为200幅255*255的二维图像叠加在一起,200幅图像中相同位置像素的灰度值画成曲线表示出来便是这一像素点的光谱域信息了。
    也就是说,高光谱图像不仅包含丰富的光谱域信息,同时也跟一般的二维图像一样,包含相同的空间域信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vandh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值