秃然暴富
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
44、新型完美非线性多项式研究
本文围绕完美非线性(PN)多项式展开研究,介绍了新的PN函数族的构造方法,并探讨了PN函数的等价性与不等价性。通过理论推导和证明,文章展示了新构造的PN函数与已知PN映射的不等价性,并提出了一种新的确保完美非线性的方法,显著降低了计算复杂度。这些研究成果为密码学、序列和编码理论等领域提供了新的思路和工具,未来有望在安全加密算法和高效编码方案中得到应用。原创 2025-07-30 09:05:16 · 50 阅读 · 0 评论 -
43、布尔函数与完美非线性多项式研究
本文围绕布尔函数的负弯曲性质和完美非线性(PN)多项式展开深入研究。首先分析了迈奥拉纳-麦克法兰类中的负弯曲函数,给出了其部分对偶函数的表达式,并证明了当 $n > 3$ 时,该类函数的度数界限为 $n - 1$。接着介绍了 PN 多项式的基本性质、等价关系及其在交换半域理论中的应用。文章重点提出了新的无限类 PN 多项式,并详细证明了其 PN 性质。这些研究成果不仅丰富了布尔函数和 PN 多项式的理论体系,还为密码学、代数学和编码理论等领域提供了新的研究方向和方法。原创 2025-07-29 13:04:36 · 50 阅读 · 0 评论 -
42、麦奥拉纳 - 麦克法兰类中的负弯曲函数
本文研究了同时具备弯曲性和负弯曲性的布尔函数——弯曲-负弯曲布尔函数,提出了新的构造方法和保持弯曲-负弯曲性质的变换。基于麦奥拉纳-麦克法兰类函数结构,构造了具有更一般代数次数的弯曲-负弯曲布尔函数,并通过正交群变换和部分对偶变换扩展了弯曲-负弯曲函数的集合。这些成果为密码学中的布尔函数设计提供了理论支持和实用工具。原创 2025-07-28 16:40:39 · 55 阅读 · 0 评论 -
41、3对1和幂APN S盒的研究
本文系统研究了3对1和幂几乎完美非线性(APN)S盒的构造与性质。首先介绍了APN S盒的基本定义及其判定条件,并探讨了3对1 S盒的构造方法及其在抵抗差分攻击中的优势。随后分析了幂函数成为APN的必要条件,并通过多个定理和示例展示了如何判断特定幂函数是否具有APN性质。研究结果为密码系统中S盒的设计与分析提供了理论支持,有助于筛选和构造具有良好差分性质的S盒,提升密码系统的安全性。原创 2025-07-27 09:41:53 · 79 阅读 · 0 评论 -
40、关于F2n上的一类置换多项式及3对1和幂APN S盒的研究
本文围绕有限域F2n上的置换多项式和3对1及幂形式的几乎完美非线性(APN)S盒进行了深入研究。首先,探讨了形如F(X) G(X) + γTr(H(X))的置换多项式的构造及其充要条件,并分别分析了G(X)为置换多项式和线性化多项式时的特性,总结了多种形式的置换多项式的判断条件。其次,研究了3对1 S盒和幂APN S盒在密码学中的重要性,详细分析了其定义、性质以及在块密码中的应用,尤其关注偶数个变量上幂APN函数的形式及筛选非APN幂函数的方法。通过理论推导、实例分析和流程图展示,为密码设计中置换多项式和原创 2025-07-26 14:15:31 · 28 阅读 · 0 评论 -
39、布尔函数高阶非线性与一类置换多项式研究
本文围绕布尔函数的高阶非线性与一类置换多项式展开研究。在布尔函数方面,计算了特定函数的高阶非线性值,并通过计数论证证明了具有下界高阶非线性的置换存在性,给出了不同参数下的下界值以及当n趋于无穷时的渐近结果。在置换多项式方面,研究了形如F(X) G(X) + γTr(H(X))的置换多项式,并将其问题转化为寻找具有线性结构的布尔函数,详细探讨了线性结构的定义、性质及单项式布尔函数的判定条件。最后分析了两者的内在联系,并探讨了其在密码学和编码理论中的应用意义,同时展望了未来可能的研究方向。原创 2025-07-25 16:37:05 · 18 阅读 · 0 评论 -
38、布尔函数高阶非线性研究
本文深入探讨了布尔函数的高阶非线性理论,包括其导数与非线性下界的关系,并研究了高阶非线性在S盒(尤其是AES中的逆S盒)上的扩展定义与应用。文章分析了高阶非线性在密码系统安全性中的作用,并结合具体函数(如乘法逆函数)给出了实际非线性值与理论下界的对比。同时,讨论了高阶非线性在密码攻击中的潜在应用及未来研究方向,如更精确的界估计、新型攻击方法的设计和高安全性S盒的构造。原创 2025-07-24 14:24:01 · 20 阅读 · 0 评论 -
37、布尔函数与S盒的高阶非线性研究
本文探讨了布尔函数与S盒的高阶非线性特性,包括高阶非线性的定义、限制性质以及与代数免疫性的关系。文章总结了不同情况下的上界和下界结果,并通过定理推导和mermaid流程图展示了关键结论。这些研究对于密码学中函数和S盒的设计与安全性分析具有重要意义。原创 2025-07-23 14:19:49 · 26 阅读 · 0 评论 -
36、Z4序列族部分相关性及布尔函数高阶非线性研究
本文研究了Z4序列族的部分相关性及其矩的性质,以及布尔函数和S-盒的高阶非线性问题。在序列相关性方面,分析了A族、B族和C族序列在不同周期和子集下的相关和、权重分布以及部分相关函数的统计特性。在密码学方面,探讨了布尔函数和S-盒的高阶非线性定义、计算困难性及下界证明的挑战。这些研究为通信系统中的序列设计和对称密码系统的安全性分析提供了理论支持。原创 2025-07-22 16:43:39 · 27 阅读 · 0 评论 -
35、最高有效位的峰旁瓣电平及Z4序列族的部分相关性研究
本研究围绕伽罗瓦环上的规范多项式及其生成的二进制序列展开,探讨了序列的部分周期分布、非周期自相关以及Z4序列族的部分相关性。通过分析伽罗瓦环的结构和迹函数的性质,研究了序列族A、B和C的定义及其周期相关特性。这些结果对于CDMA等通信系统中的扩频码设计和同步性能优化具有重要意义,并为未来序列设计和应用提供了理论支持。原创 2025-07-21 12:23:37 · 21 阅读 · 0 评论 -
34、多进制低相关区序列集设计与伽罗瓦环上迹码最高有效位的旁瓣峰值研究
本博文围绕多进制低相关区(LCZ)序列集的设计与伽罗瓦环上迹码最高有效位的旁瓣峰值研究展开。第一部分提出了一种新的方法,通过交错技术从具有良好自相关特性的M进制序列构造M进制LCZ序列集,该构造在周期、LCZ大小和字母表大小上具有高度灵活性,并在Tang-Fan-Matsufuji界限下是最优或接近最优的,适用于准同步码分多址(QS-CDMA)通信环境。第二部分研究了伽罗瓦环上加权度迹码投影到最高有效位所得二进制序列的统计特性,结合Weil类界限和傅里叶变换估计,推导了其非周期相关、旁瓣峰值、部分周期不平衡原创 2025-07-20 12:47:44 · 30 阅读 · 0 评论 -
33、子序列生成器、ℓ序列与M元低相关区序列集设计
本文探讨了子序列生成的两种主要方法——FCSR合成构造法和多步FCSR构造法,并详细分析了它们在周期关系、复杂度问题以及实现难度方面的特点。同时,介绍了M元低相关区(LCZ)序列集的设计原理及其在准同步码分多址(QS-CDMA)系统中的应用。文章还讨论了子序列生成与流密码安全性的关系,以及M元LCZ序列集设计在不同场景下的参数选择和与其他技术的结合。最后,对相关研究方向提出了展望。原创 2025-07-19 15:01:44 · 16 阅读 · 0 评论 -
32、随机序列生成算法与并行化研究
本文探讨了伪随机序列的生成算法及其优化方法,重点分析了线性递推跳跃算法和梅森旋转算法(如MT19937)的性能与复杂度,并比较了不同跳跃算法在状态空间维度上的适用性。同时,研究了伪随机序列的并行生成方法,涵盖LFSR和FCSR两种主要结构的子序列生成策略,分别讨论了其在提高吞吐量和降低功耗方面的应用潜力。最后,结合实验结果和复杂度分析,提供了在不同应用场景下选择合适算法的建议,并展望了未来在FCSR子序列生成方面的优化方向。原创 2025-07-18 10:17:49 · 24 阅读 · 0 评论 -
31、基于格的最小部分实现算法与线性递推快速跳转算法
本文详细介绍了两种高效的算法:基于格的最小部分实现算法和线性递推快速跳转算法。前者用于矩阵序列处理,通过寻找基元素的约化关系来解决最小部分实现问题;后者用于伪随机数生成器中的跳转问题,利用形式级数空间中的多项式乘法提高跳转效率。两种算法在不同的应用场景中均表现出优异的性能,并为相关领域的计算提供了更高效的方法。原创 2025-07-17 13:41:24 · 21 阅读 · 0 评论 -
30、基于格的最小部分实现算法
本文提出了一种基于格理论的最小部分实现算法,用于解决矩阵序列的线性系统建模问题。该算法将向量序列的最小部分实现扩展到多输入多输出(MIMO)系统,并通过格基约简方法找到最优实现。文章详细介绍了算法原理、实现步骤、复杂度分析及其在密码系统、信号处理和控制系统中的应用前景。此外,还讨论了所有最小部分实现的参数化形式及其唯一性条件,并给出了优化后的迭代算法以提高效率。原创 2025-07-16 15:28:57 · 20 阅读 · 0 评论 -
29、2n 周期二进制序列与线性递归多序列的广义联合线性复杂度
本博文围绕2n周期二进制序列的k误差线性复杂度和线性递归多序列的广义联合线性复杂度展开研究。针对2n周期二进制序列,分析了在不同线性复杂度L的范围内,通过定义集合并计算其计数函数N3(L),并结合Games-Chan算法探讨了序列在符号改变下的线性复杂度不变性。对于线性递归多序列,系统阐述了广义联合线性复杂度的定义及其与联合线性复杂度的关系,提出了若干关键定理、推论与实例,揭示了其在向量流密码系统中的重要应用价值。最后总结了相关理论的实际应用建议,并展望了未来研究方向。原创 2025-07-15 16:15:18 · 32 阅读 · 0 评论 -
28、具有固定 k 误差线性复杂度的 2n 周期二进制序列研究
本文围绕2n周期二进制序列的固定k误差线性复杂度展开研究,探讨了其在不同条件下的特性与计数函数,特别分析了当wH(2n - L) ≠ 2时的2误差和3误差线性复杂度情况。通过理论推导和具体案例分析,提供了相应的计数函数及实际应用指导,并探讨了其在通信系统和密码学领域的应用潜力。原创 2025-07-14 11:22:30 · 28 阅读 · 0 评论 -
27、XL 方法生成的线性独立方程数量及 2n 周期二进制序列复杂度研究
本博客围绕XL方法生成线性独立方程的数量以及2^n周期二进制序列的线性复杂度与k-误差线性复杂度展开研究。首先通过构建矩阵H_i,推导出线性独立方程数量的计算公式,并与已有工作建立联系;接着介绍了线性复杂度的基本概念及其在密码学中的重要性,进一步探讨了k-误差线性复杂度和merr(S)的计算公式。研究结果对流密码设计和算法优化具有重要理论价值和实际应用意义。原创 2025-07-13 14:00:07 · 36 阅读 · 0 评论 -
26、密码学中的序列与方程求解算法研究
本博客聚焦密码学中的序列设计与多元多项式方程求解算法。重点研究距离规避序列在认证标签计算中的应用,通过穷举搜索和迭代改进方法找到最优序列,并探讨了汉明重量最小化对效率的影响。同时,对扩展线性化(XL)算法进行了深入分析,讨论了其在求解密码学方程系统中的表现,以及依赖关系对算法效率的影响。博客还提出了未来的研究方向,包括优化序列搜索算法、改进XL算法效率以及探索更一般的独立性条件下的方法,为密码系统的安全性和效率提供保障。原创 2025-07-12 09:10:05 · 25 阅读 · 0 评论 -
25、极低带宽认证中的距离规避序列与序列的预期π - 进安全度量
本文探讨了极低带宽认证中的距离规避序列与序列的预期π-进安全度量问题。在序列安全度量方面,研究了基于代数反馈移位寄存器(AFSR)的环结构及其对随机序列抗攻击能力的影响;在极低带宽认证方面,提出了子集认证方案,并通过滑动窗口构造和循环差集方法优化了认证效率与安全性。文章还分析了安全与效率的权衡、内存限制的应对策略,并通过实验验证了方案在容忍消息丢失方面的优势。最后,对未来研究方向进行了展望。原创 2025-07-11 15:04:26 · 24 阅读 · 0 评论 -
24、序列的预期 π - 进安全度量分析
本文围绕流密码中序列的π-进安全度量展开深入研究,介绍了线性反馈移位寄存器(LFSR)、带进位反馈移位寄存器(FCSR)及代数反馈移位寄存器(AFSR)等序列生成器的基本概念及其对应的跨度与复杂度。通过定义大小函数和范数函数,系统分析了其代数性质,并在pd2的特殊情况下推导了周期序列的预期π-进复杂度Eλn的下界,证明其属于n-O(log(n))。研究结果为流密码中密钥序列的安全选择提供了理论依据,同时指出了未来在非周期序列、更一般情况及与其他密码学概念结合的研究方向。原创 2025-07-10 09:03:22 · 26 阅读 · 0 评论 -
23、序列、DFT与抗快速代数攻击分析
本文探讨了布尔函数在抗快速代数攻击(FAA)方面的性质及其分析方法,重点介绍了如何通过高斯消元法处理矩阵以寻找函数的零化子和乘数。文章分析了布尔函数的退化情况,并定义了启用对(d, e)的概念,用于描述函数在不同次数限制下的攻击可行性。通过引入离散傅里叶变换(DFT)和多项式表示,提高了对函数密码学性质的分析效率,并对比了多项式表示与布尔表示的优劣。最后,通过示例说明了某些函数在抗FAA攻击中的表现,并总结了验证函数是否具备抗FAA能力的步骤。原创 2025-07-09 15:42:03 · 31 阅读 · 0 评论 -
22、布尔函数、序列与多项式基:理论与应用解析
本文深入解析了布尔函数、线性反馈移位寄存器(LFSR)序列、离散傅里叶变换(DFT)、多项式基以及低次乘法器等核心概念,探讨了它们在密码学和数字信号处理等领域的理论基础与实际应用。文章详细阐述了布尔函数的代数次数、汉明重量、迹表示及其与序列DFT的关系,介绍了多项式基的高效计算方法,并通过具体案例分析了低次乘法器对密码系统安全性的影响。此外,文章还探讨了多项式基与Reed-Muller码之间的联系,并展望了未来研究方向,包括算法优化、新型密码构造及应用拓展等。原创 2025-07-08 10:31:53 · 19 阅读 · 0 评论 -
21、最优跳频序列与快速代数攻击相关研究
本文围绕跳频序列与快速代数攻击展开研究。首先基于幂剩余理论构造了不同幂次的跳频序列集,分析了其最优平均汉明相关性和最优最大汉明相关性,结果显示3次和4次幂剩余序列是最优平均汉明相关族但非最优最大汉明相关族,而5次幂序列在满足条件下同时是最优平均和最大汉明相关族。其次介绍了线性反馈移位寄存器(LFSR)在流密码中的应用及相关攻击方法,包括代数攻击、快速代数攻击和选择性离散傅里叶变换攻击,并重点分析了快速代数攻击的适用条件,指出Courtois充分条件的局限性,提出了存在合适乘数的充分必要条件及构造算法。研究结原创 2025-07-07 14:52:08 · 19 阅读 · 0 评论 -
20、克洛斯特曼和、椭圆曲线与最优跳频序列研究
本文围绕克洛斯特曼和、椭圆曲线与跳频序列的研究展开,探讨了克洛斯特曼零点的寻找方法及其与椭圆曲线的关系,深入分析了跳频序列的设计需求与参数关系,重点提出了基于幂剩余的跳频序列构造方法,并证明了其在汉明相关性能方面的最优性。研究成果为通信领域的跳频系统设计提供了理论支持与实践指导。原创 2025-07-06 14:26:18 · 21 阅读 · 0 评论 -
19、循环序列的乘法特征和与克洛斯特曼和的研究
本文研究了循环序列的乘法特征和与克洛斯特曼和的理论基础及其应用。首先探讨了雷德伊函数生成的循环序列的周期性质及其乘法特征和的界估计,接着分析了克洛斯特曼和的定义、整除性及其与椭圆曲线点数的关系。文中还介绍了这些数学工具在密码学、编码理论和数论中的具体应用,包括伪随机序列生成、加密算法设计和有限域上方程解的研究。最后,展望了未来在更精确界估计、零点分布分析以及新应用领域的发展方向。原创 2025-07-05 10:53:01 · 24 阅读 · 0 评论 -
18、数字信号与序列的群表示设计及相关序列研究
本文围绕数字信号与序列的群表示设计及相关序列研究展开,深入探讨了群表示中算子公式的推导、振荡器系统的构建方法、射影德布鲁因序列的构造与性质,以及基于雷德伊函数的非线性递归序列特征和界的优化结果。研究涵盖了数学理论推导与潜在应用分析,为信号处理、编码理论和密码学等领域提供了重要的理论支持与实践指导。原创 2025-07-04 09:46:50 · 34 阅读 · 0 评论 -
17、数字信号与序列的群表示设计:海森堡系统与振荡器系统解析
本文深入解析了数字信号处理中的海森堡系统与振荡器系统。海森堡系统基于海森堡群及其表示理论,构建了具有优良自相关和互相关特性的信号系统,广泛应用于雷达和通信领域。振荡器系统则基于有限辛群及其韦伊表示,通过分裂与非分裂环面构造了规模更大、模糊函数集中在原点的信号集合。文章进一步介绍了振荡器系统在离散雷达目标检测和码分多址(CDMA)中的应用,并给出了生成分裂环面对应振荡器系统的显式算法。这两类系统在现代信号处理中具有重要的理论和应用价值。原创 2025-07-03 10:30:45 · 25 阅读 · 0 评论 -
16、微分组合学与数字信号序列的研究
本博文围绕微分组合学与数字信号序列的群表示设计展开,深入研究了组合数学中的泰勒展开方法、莱布尼茨法则、组合与划分理论,并结合实际应用探讨了数字信号系统的设计与优化。重点介绍了振荡器系统的构造算法及其在离散雷达和数字通信中的应用,该系统具备良好的自相关性、互相关性、低峰均功率比和傅里叶不变性,具有重要的理论和实践意义。原创 2025-07-02 09:30:40 · 22 阅读 · 0 评论 -
15、低相关交织QAM序列的新家族
本文介绍了两个新的低相关QAM序列族:I2SQ-B和I4SQ。基于伽罗瓦环和子空间构造方法,这些序列族在16-QAM、64-QAM以及更高阶星座中表现出更低的归一化最大相关值(θ_max),同时保持了相同的数据传输速率。通过比较不同族的周期、欧几里得距离和相关性,I2SQ-B在16-QAM星座中表现最优,而I4SQ在更高阶QAM中展现出更低的相关性。这些结果为通信系统中序列设计提供了新的选择。原创 2025-07-01 16:33:18 · 29 阅读 · 0 评论 -
14、低相关性序列家族的研究与进展
本文围绕低相关性序列家族展开研究,重点分析了Kerdock序列的相关分布特性及低相关性交织QAM序列的构造方法。通过伽罗瓦环、迹函数、格雷映射等数学工具,深入探讨了四元序列与二进制序列之间的相关性联系,并基于此提出了两种性能优异的QAM序列族——I2SQ-B和I4SQ。这些序列在CDMA系统、无线通信和卫星通信中具有广泛应用,能够有效降低用户间干扰,提高系统容量和传输效率。研究成果为序列设计提供了理论支持和新思路。原创 2025-06-30 09:38:26 · 32 阅读 · 0 评论 -
13、m序列长度为 \(2^{2k} - 1\) 和 \(2^{k} - 1\) 的相关研究
本研究围绕长度为 $2^{2k} - 1$ 和 $2^{k} - 1$ 的 m 序列的互相关性质展开,通过多项式理论、指数和计算以及条件推理证明等方法,深入分析了其互相关值的分布情况。研究涵盖了多项式零点的条件、指数和的分布、互相关特性及其在通信和密码学领域的应用价值,并提出了未来的研究方向。原创 2025-06-29 14:04:50 · 32 阅读 · 0 评论 -
12、序列互相关和自相关结果解析
本文深入探讨了序列的互相关与自相关性质,重点研究了Gold指数、Kasami指数等特殊序列的构造与特性。通过分析序列的线性复杂度和迹表示,揭示了完美自相关序列的构造条件及其在通信和密码学中的应用潜力。文章还研究了仿射多项式的零点分布,以及其与互相关函数的关系,为序列设计提供了理论支持。最后,文章总结了相关领域的研究成果,并提出了未来的研究方向。原创 2025-06-28 12:03:12 · 18 阅读 · 0 评论 -
11、非二进制序列族与序列互相关及自相关研究
本文研究了非二进制序列族和二进制序列的相关性特性,重点分析了序列族的定义、互相关与自相关性质,以及几乎弯曲(AB)指数在有限域中的表现。通过理论推导与证明,揭示了序列相关分布的数学结构,并探讨了其在无线通信、密码学和雷达系统等领域的应用潜力。此外,文章还展望了未来在新序列类型探索、指数拓展及应用性能优化等方面的研究方向。原创 2025-06-27 09:52:27 · 19 阅读 · 0 评论 -
10、一类非二元码与序列族的研究
本文深入研究了一类非二元Kasami码C_k的代数性质,包括其根的性质、秩分布和重量分布,并基于该码构造了一类非二元序列族F_k,分析了其周期相关函数与最大相关幅值。通过有限域上的二次型理论和指数和计算,得到了该码的详细重量分布以及秩分布情况,并揭示了其在序列设计中的应用价值。与其他已知序列族相比,该序列族具有较大的族大小,尽管其最大相关幅值未达到最优,但仍为编码理论和序列设计提供了新的研究方向。原创 2025-06-26 10:29:26 · 11 阅读 · 0 评论 -
9、序列算术相关性的研究与非二元码构造
本文研究了ℓ-序列的算术相关性及其在非二元码构造中的应用。首先分析了ℓ-序列的算术自相关特性,并通过不平衡性估计相关值。其次探讨了算术自相关和互相关的期望值、二阶矩和方差,同时讨论了算术互相关的计算方法及其复杂性。此外,研究了具有算术移位相加性质的序列与ℓ-序列的关系,并构造了一类非二元序列族及其相关分布。最后指出了当前未解决的问题和未来研究方向,包括非二元序列的算术互相关计算和算术自相关的二阶矩与方差计算。这些成果在通信和密码学领域具有潜在应用价值。原创 2025-06-25 10:46:29 · 16 阅读 · 0 评论 -
8、序列的算术相关性及幂与本原元分布研究
本文研究了有限域中序列的算术相关性以及幂和本原元的分布特性。通过分析逆序列和非线性序列的特征和界,推导出序列中幂和本原元的平均分布结果,并探讨了其在有限域算法设计中的应用价值。此外,文章还研究了非二进制ℓ-序列的算术自相关性,表明其几乎是最优的。这些理论成果在密码学、编码理论和通信系统等领域具有潜在的应用意义。原创 2025-06-24 13:26:23 · 26 阅读 · 0 评论 -
7、序列性质研究与随机分布估计
本博文围绕多种序列的性质与随机分布展开研究,包括模块化声纳序列、加法序生成序列、逆序递归序列以及非线性递归序列。研究内容涵盖序列的周期性质、自相关特性、伪随机性分析和字符和估计等方面。通过计算机搜索、代数构造、实验计算与理论推导相结合,对序列的存在性、分布规律和应用潜力进行了系统探讨。研究中提出了多个未解问题和未来研究方向,如特定尺寸模块化声纳序列的寻找、加法序生成序列自相关猜想的证明、以及递归序列相关算法的优化等。这些研究为序列在信号处理、通信系统和密码学等领域的应用提供了理论基础和技术支持。原创 2025-06-23 09:31:58 · 25 阅读 · 0 评论 -
6、流密码随机测试与模块化声纳序列的研究
本文研究了流密码的随机性测试方法和模块化声纳序列的概率估计。针对流密码,分析了覆盖测试、ρ测试和DP覆盖测试三种统计方法,并对eSTREAM项目的候选密码进行了实验评估,发现Pomaranch密码在覆盖测试中存在随机性问题。对于模块化声纳序列,通过回溯搜索和概率估计方法研究了其最大长度和数量分布,并验证了概率模型的准确性。研究成果为流密码安全性分析和模块化声纳序列的构造与应用提供了理论支持和实践参考。原创 2025-06-22 11:33:59 · 47 阅读 · 0 评论 -
5、基于随机映射的流密码新型区分器
本文基于随机映射的特性,提出了三种针对流密码的新区分器:覆盖测试、ρ-测试和区分点(DP)覆盖测试。这些区分器利用统计分析方法,评估流密码的随机性,并应用于 eSTREAM 项目的第三阶段候选算法。实验结果表明,这些区分器能够有效识别密码的统计弱点,为流密码的安全性分析提供了新的工具和视角。原创 2025-06-21 15:13:07 · 26 阅读 · 0 评论