3、探索前馈神经网络:从基础到实战

探索前馈神经网络:从基础到实战

1. 神经网络的基本单元

神经网络是深度学习的核心组成部分之一,而其基本构建块则是单元(unit)。单元是神经网络的基本功能模块,它接收一个向量输入 ( \mathbf{x} \in \mathbb{R}^n ) 并产生一个标量输出。每个单元由一个权重向量 ( \mathbf{w} \in \mathbb{R}^n ) 和一个偏置项 ( b ) 参数化,其输出可以表示为:

[ f(\mathbf{x}) = \sum_{i=1}^{n} w_i x_i + b ]

其中,( f ) 是激活函数,它可以是非线性的。激活函数赋予了神经网络非线性表达能力,使其能够处理复杂的模式识别任务。常见的激活函数包括Sigmoid、ReLU、Tanh等。

激活函数的作用

激活函数在神经网络中扮演着至关重要的角色,它们不仅决定了神经元的输出范围,还影响了梯度传播的效果。选择合适的激活函数对于模型的性能至关重要。以下是几种常用的激活函数:

激活函数 表达式 特点
Sigmoid ( f(x) = \frac{1}{1 + e^{-x}} ) 输出范围在(0, 1)之间,适用于二分类问题
ReLU ( f(x) = \max(0, x) )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值