import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_squared_error, r2_score
import pandas as pd
# 设置中文显示
plt.rcParams["font.family"] = ["SimHei", "WenQuanYi Micro Hei", "Heiti TC"]
plt.rcParams["axes.unicode_minus"] = False # 解决负号显示问题
# 加载糖尿病数据集
diabetes = load_diabetes()
X = pd.DataFrame(diabetes.data, columns=diabetes.feature_names)
y = pd.Series(diabetes.target, name='疾病进展')
# 划分数据集
Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, y, test_size=0.3, random_state=42)
for i in (Xtrain, Xtest):
i.index = range(i.shape[0])
# 训练线性回归模型
reg = LinearRegression().fit(Xtrain, Ytrain)
yhat = reg.predict(Xtest)
# 1. 真实值 vs 预测值散点图
plt.figure(figsize=(10, 6))
plt.scatter(Ytest, yhat, alpha=0.6) # alpha设置透明度
plt.plot([Ytest.min(), Ytest.max()], [Ytest.min(), Ytest.max()], 'r--') # 理想预测线
plt.xlabel('真实疾病进展')
plt.ylabel('预测疾病进展')
plt.title('真实值与预测值对比')
plt.show()
# 2. 残差图(误差分布)
residuals = Ytest - yhat
plt.figure(figsize=(10, 6))
sns.histplot(residuals, kde=True, bins=30) # 直方图+核密度曲线
plt.xlabel('残差(真实值-预测值)')
plt.ylabel('频数')
plt.title('残差分布')
plt.show()
# 3. 特征影响程度条形图(系数绝对值)
coef = pd.Series(reg.coef_, index=X.columns)
coef_abs = coef.abs().sort_values() # 按系数绝对值排序
plt.figure(figsize=(10, 6))
coef_abs.plot(kind='barh')
plt.xlabel('系数绝对值(影响程度)')
plt.ylabel('特征')
plt.title('各特征对疾病进展的影响程度')
plt.show()
# 输出评估指标
print(f"均方误差(MSE):{mean_squared_error(Ytest, yhat):.4f}")
print(f"决定系数(R²):{r2_score(Ytest, yhat):.4f}")
数据准备与模型训练
代码首先加载糖尿病数据集,将特征数据转换为DataFrame格式(列名为数据集自带的特征名称),目标变量命名为“疾病进展”。通过train_test_split将数据按7:3比例划分为训练集和测试集,并重置索引以保证数据一致性。随后使用线性回归模型在训练集上拟合,得到模型参数后对测试集进行预测。
可视化评估
1. 真实值与预测值对比:通过散点图展示测试集真实疾病进展与模型预测值的分布,图中红色虚线为理想预测线(真实值=预测值)。散点越贴近该线,说明预测效果越好,可直观判断模型整体拟合趋势。
2. 残差分布分析:残差即真实值与预测值的差值,通过直方图结合核密度曲线呈现其分布。若残差近似正态分布且均值接近0,表明模型误差分布合理,无明显偏差;若分布异常(如偏态),则可能存在模型设定问题。
3. 特征影响程度排序:提取线性回归模型的系数,按绝对值排序后绘制水平条形图,直观展示各特征对疾病进展的影响强度。系数绝对值越大,说明该特征在模型中对预测结果的影响越显著(不反映正负相关性)。
量化评估指标
• 均方误差(MSE):衡量预测值与真实值的平均平方差,数值越小说明模型精度越高。
• 决定系数(R²):表示模型可解释的目标变量变异比例,取值范围为0~1,越接近1说明模型拟合效果越好。