Faster rcnn 训练自己的数据—环境搭建

本文详细介绍了如何搭建Faster R-CNN的目标检测环境,包括配置Caffe、编译安装Python版本源码等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

faster-rcnn Python版本源码地址:https://github.com/rbgirshick/py-faster-rcnn

这篇文章主要介绍搭建用faster-rcnn进行目标检测所需的环境。

1.电脑上已经有可运行caffe所需的环境

2.下载faster-rcnn python版本源码

git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git  
3.进入caffe-faster-rcnn中,编译caffe,可参考我之前的博客:http://blog.csdn.net/w113691/article/details/77937132(直接从3.编译caffe开始)。这里需要注意的是在修改 Makefile.config文件时,把WITH_PYTHON_LAYER := 1前的#去掉

# In your Makefile.config, make sure to have this line uncommented  
WITH_PYTHON_LAYER := 1  
# Unrelatedly, it's also recommended that you use CUDNN  
USE_CUDNN := 1
然后make all -j8,编译通过。(编译不通过,可以去网上找答案,基本上都能找得到。)

4. 然后在终端 make pycaffe 一下,一定要执行这条指令,不然后面会报错:No import named _caffe.

5. 运行faster-rcnn里的demo.py

cd py-faster-rcnn/tools  
./tools/demo.py

出现下图表示,环境已经搭建好了。


 




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT远征军

谢谢各位鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值