#今日论文推荐#顶刊TPAMI 2022,基于概率分布图的任意形状文本实例分割和检测方法

#今日论文推荐#顶刊TPAMI 2022,基于概率分布图的任意形状文本实例分割和检测方法

本文简要介绍TPAMI 2022录用论文"Arbitrary Shape Text Detection via Segmentation with Probability Maps"的主要工作。该文提出了一个基于概率分布图的任意形状文本实例分割和检测方法。本文设计了一个Sigmoid Alpha Function (SAF)函数来建模一个像素属于文本像素的概率和到标注边界距离的关系。我们可以选取一组合适的分布来覆盖任意非确定性的分布。一个迭代模型被用来隐式地学习一组分布之间的映射关系,通过迭代的方法逐步生成概率分布图。最后,区域生长算法处理这一组概率分布图,从而完整地重建出精确的文本实例区域。

任意形状文本检测是一项具有挑战性的任务,这是由于多变的方向或形状,悬殊的大小和宽高比,以及不精确的标注等因素导致的。由于基于实例分割的方法[1][2]能够很容易地适应各种不同形状的文本,因此近年来受到了广泛关注。目前,基于分割思路来解决任意形状文本检测的方法[1][2][3]大多依赖对图片像素进行二分类(Text/no-text)得到的置信度分布图。然而,文本图像精确的像素级标注是非常困难的,现有的场景文本检测数据集大多只提供粗粒度的边界标注,这些供粗粒度的边界标注内总是存在大量背景噪声像素。但是现有的检测方法[3]往往选择了忽略这个问题,从而简单地认为粗粒度的边界标注内的像素都是文本像素。这也导致了通过学习得到的置信度分布图不那么令人满意,常常包含许多的噪声和缺陷,从而极大的限制了模型的实际分割效果。
对于文本检测来说,粗粒度的边界标注通常是落在背景区域的。由于标注的偏差,标注的边界究竟包含的多少的背景区域,是难以准确的衡量的。但是可以知道的是,标注边界内的像素,距离标注边界越近,那么它是背景像素的概率就越大。从现有一些基于分割的文本检测方法得到的置信度分布图,我们也可以看出对于同一个文本实例,置信度的分布大概呈现从中到边界递减的规律。基于此观察,这篇论文提出了一个概率分布图的文本检测方法,用于准确分割文本实例。

论文题目:Arbitrary Shape Text Detection via Segmentation with Probability Maps.
详细解读:https://www.aminer.cn/research_report/6311fefc7cb68b460f12520ficon-default.png?t=M7J4https://www.aminer.cn/research_report/6311fefc7cb68b460f12520f
AMiner链接:https://www.aminer.cn/?f=cs

### TPAMI 2025 年论文趋势与领域发展 #### 跨模态学习的趋势 随着跨模态技术的发展,TPAMI 2025 的研究可能更加关注语言视觉之间的深层次交互。例如,在少样本类增量学习中,利用语言引导的关系迁移(Language-guided Relation Transfer, LRT),能够有效提升模型在新类别上的泛化能力[^3]。这种技术不仅依赖于传统的视觉特征提取,还引入了文本语义信息,使得模型能够在少量标注数据的情况下快速适应新的任务。 #### 增量学习中的知识迁移 在增量学习方面,TPAMI 2025 可能进一步探索如何通过知识迁移减少灾难性遗忘的影响。具体而言,基于图结构的知识表示模块 \(M_{\text{graph}}\) 已经展现出显著的优势,其增量准确率可达到 39.32%[^3]。未来的研究可能会更深入地探讨如何设计高效的图神经网络架构,以便更好地捕捉不同类别间的复杂关系,并将其应用于动态环境下的连续学习场景。 #### 领域自适应与风格化学习 对于领域自适应问题,TPAMI 2025 或将继续推进风格化学习的方法论创新。当前已有研究表明,通过模拟过去领域的输入分布,可以在一定程度上缓解领域级别的灾难性遗忘[^1]。此外,为了应对未见过的新领域,预测器需要具备更强的泛化能力,而这通常可以通过增加训练过程中遇到的数据多样性来实现。预计未来的算法将进一步优化这一过程,使模型不仅能处理已知领域的变化,还能高效扩展至未知领域。 #### 视觉原型的作用机制 关于视觉原型的应用,现有工作已经证明它们可以作为调整特征的重要上下文信息[^2]。在未来的工作中,研究人员或许会尝试构建更为灵活的视觉原型更新策略,允许在不破坏原有知识的前提下逐步融入新增加的信息。这种方法有望为解决长期存在的类别级灾难性遗忘提供一种全新的思路。 ```python import torch.nn as nn class VisualPrototypeModule(nn.Module): def __init__(self, num_classes, feature_dim): super().__init__() self.prototype = nn.Parameter(torch.randn(num_classes, feature_dim)) def forward(self, features): prototypes = self.prototype.unsqueeze(0).expand(features.size(0), -1, -1) return torch.cat([features, prototypes], dim=-1) ``` 此代码片段展示了一个简单的视觉原型模块的设计方式,它可以直接嵌入到现有的深度学习框架中用于增强特征表达。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值