55、高效零知识证明与数字签名技术解析

高效零知识证明与数字签名技术解析

1. 高效零知识证明性能优势

在零知识证明领域,一种新方法展现出显著的性能优势。由于无需进行切分选择操作,与共享转换方法相比,证明的参数规模大幅缩短,且仅需通信一个元素域。这使得证明的通信复杂度相较于以往方法有了显著降低,与 [Sta96] 相比降低了 77%,还超越了 [BTV20] 的防弹证明方法。例如,协议 3 在 2048 位素数下,当 $N = 28$,$M = 1744$,$τ = 17$ 时,证明规模为 17.2 KB;而该新方法在 3072 位素数下,对于相同数量的参与方,证明规模仅为 6.6 KB。

2. 证明 IPKP 解的知识

2.1 置换核问题(PKP/IPKP)定义

设 $(q, m, n)$ 为正整数,$H \in F_q^{m\times n}$ 是一个随机矩阵,向量 $v \in F_q^n$。PKP 问题是找到一个置换 $\pi \in S_n$,使得 $H\pi(v) = 0$;非齐次版本的 IPKP 问题则是,给定目标向量 $y \in F_q^m$,找到一个置换 $\pi \in S_n$,使得 $H\pi(v) = y$。

2.2 协议调整

为了证明 IPKP 实例解的知识,即找到 $x \in F_q^n$ 使得 $Hx = y$ 且 $\pi(v) = x$,对协议 2 进行了如下调整:
- 输入 $x \in F_q^n$ 是向量,需按坐标进行转换。
- $x$ 的共享是在整数上进行的,即 $\langle x[e] \rangle_j \in [0, A - 1]^n$($A > q$),因此需添加拒

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值