自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

永远好奇,无限进步!

详细的记录各种技术的实践过程 包含但不限 Java/Go/Python/JavaScript 等等,从语言到各种框架,飞轮效应坚信不疑者!保持热情,无限进步!

  • 博客(597)
  • 收藏
  • 关注

原创 AI炼丹日志-00- Ollama:本地部署大模型的便捷新选择 | 快速安装 & 多卡运行实战

Ollama 是一个轻量级、本地化的大语言模型(LLM)运行平台,专为开发者快速部署和运行模型设计。它支持 GPU 加速、多卡并行,并内置模型下载、环境配置与推理后端,极大简化了部署流程。用户仅需一行命令即可安装,使用如 ollama pull 和 ollama run 快速启动模型。Ollama 支持 GGUF 格式模型,并基于 llama.cpp 实现高效推理,适配多平台(NVIDIA GPU、Apple Silicon 等)。它提供 HTTP API,方便集成至本地系统或应用中。

2025-04-23 09:53:34 1346 4

原创 Java-01 深入浅出 MyBatis - MyBatis 概念 ORM映射关系 常见ORM 详细发展历史

MyBatis 是一款优秀的 基于 ORM 的半自动轻量级持久层框架,它支持定制化的 SQL、存储过程以及高级映射,MyBatis 避免了几乎所有 JDBC 代码和手动设置参数以及获取结果集。MyBatis 可以使用简单的 XML 或注解来配置和映射原生类型、接口和 Java 的 POJO(Plain Old Java Objects,普通老式 Java 对象)为数据库记录。

2024-11-15 09:30:50 3582 3

原创 大数据-02-Hadoop集群 XML core-site.xml hdfs-site.xml HDFS Yarn MapRedece

HDFS(Hadoop Distributed File System)是Hadoop框架中专为大数据存储设计的分布式文件系统,具备高容错和高扩展能力。系统采用NameNode与DataNode的主从架构,支持文件分块存储与多副本机制,适合批处理和一次写入多次读取场景。HDFS集群部署涉及对core-site.xml、hdfs-site.xml等配置文件的设置,并需完成NameNode、SecondaryNameNode和DataNode节点配置。

2024-06-28 09:37:28 6023 4

原创 AI-调查研究-58-机器人 从工厂到家庭,机器人正悄悄改变世界的每个角落

机器人作为通用技术,已广泛应用于制造、医疗、农业、物流与家庭等领域。在制造业,工业机器人以六轴机械臂为核心,实现高精度自动化生产;医疗领域中,手术机器人已大规模落地,康复与护理机器人正逐步商业化;农业机器人通过自动驾驶、智能喷洒与采摘等缓解劳动力紧缺;物流仓储通过AGV/AMR与终端配送机器人大幅提升效率;家庭服务机器人涵盖清洁、陪护与教育娱乐,持续优化用户体验。各行业的技术发展路径各异,但共同呈现出智能化、网络化与融合化趋势。

2025-08-22 10:19:33 488

原创 Java-105 深入浅出 MySQL 主从复制详解:读写分离、高可用与半同步复制全覆盖

MySQL 主从复制是一种通过主库将数据变更实时同步到一个或多个从库的机制,常用于读写分离、高可用性保障、数据备份与分析卸载等场景。主库处理写操作,从库承担读操作,有效缓解性能瓶颈。其核心流程包括:主库生成 Binlog → 从库 I/O 线程拉取 Binlog 写入 Relay Log → SQL 线程重放日志实现同步。默认为异步复制,存在延迟与数据不一致风险。为提升一致性,可采用半同步复制(主库需等待至少一个从库确认写入日志)或并行复制机制。该架构广泛用于电商、金融、报表系统与多地部署场景

2025-08-22 09:08:42 349

原创 AI-调查研究-57-机器人 五大类机器人指南:工业/服务/人形/移动/特种详解

机器人作为现代智能装备的核心,广泛应用于工业制造、医疗服务、灾难救援等领域。根据功能和形态,可分为五大类:工业机器人是制造业自动化主力,具备高精度、多自由度的机械臂结构;服务机器人广泛应用于家庭、医疗、物流等,强调人机交互和环境适应能力;人形机器人模仿人类外形与动作,融合AI与控制技术,推动交叉学科发展;移动机器人拥有自主导航与路径规划能力,覆盖物流、农业、清洁等场景;特种机器人则用于极端环境任务,如军事、深海、太空等,代表机器人技术的最前沿。随着AI、传感器、通信等技术进步,各类机器人正加速智能

2025-08-21 09:55:14 891

原创 Java-104 深入浅出 MySQL 设计攻略:可用性、扩展性、一致性详解

在构建分布式系统时,需从可用性、扩展性与一致性三方面统筹设计。可用性通过冗余部署、多地容灾、服务熔断与自动故障转移实现;扩展性则依赖无状态服务、读写分离、分库分表等手段应对高并发读写;一致性设计需权衡强一致与最终一致,结合共识算法与同步策略优化体验。常见架构模式如主从复制与双主架构,在提升性能同时也带来数据同步复杂性。最终,借助路由层优化、缓存中间层与中间件,可在吞吐量与一致性之间取得平衡,构建稳定、高性能的分布式系统。

2025-08-21 09:01:42 468

原创 AI-调查研究-56-机器人 技术迭代:从液压驱动到AI协作的进化之路

机器人技术经历了从早期液压驱动和模拟控制,到现代电驱动、数字控制和感知系统的深刻演化。硬布线、开环控制、机械限位等传统方案因性能局限逐渐被淘汰。如今,电动伺服、PLC控制、视觉与力觉传感、ROS系统等技术构成主流,广泛应用于工业、物流、医疗等场景。与此同时,人工智能、群体智能、多模态感知、仿生结构等前沿方向正在重塑机器人能力边界,使其具备学习、适应、协作与高复杂任务执行能力,推动机器人从“自动化设备”走向“智能体”,不断拓展应用疆界。

2025-08-20 09:12:40 937

原创 Java-103 深入浅出 MySQL 死锁全解析:原理、场景复现与优化

数据库中的死锁是指多个事务因资源互相等待,形成循环依赖,最终都无法继续执行。它的产生通常满足四个必要条件:互斥、不可抢占、请求与保持、循环等待。在表级或行级锁中,常见的死锁情形包括事务交叉请求资源、索引缺失导致全表锁、共享锁转排他锁等。应对死锁,数据库通常通过死锁检测与超时机制解决,并可通过固定资源访问顺序、缩短事务时间、合理设置隔离级别、优化SQL与索引结构等方式有效预防。此外,利用数据库日志工具(如 MySQL 的 SHOW ENGINE INNODB STATUS)可辅助定位死锁源头。

2025-08-20 08:57:44 1279

原创 AI-调查研究-55-机器人 百年进化史:从Unimate到人形智能体的技术跃迁

机器人技术自1921年“Robot”一词首次提出以来,经历了从科幻走向现实的百年演进。从1959年Unimate开创工业机器人时代开始,机器人经历了液压驱动向电动伺服、磁鼓控制向微处理器控制的关键技术变革。70年代至90年代,德国KUKA、日本川崎、美国Unimation等公司推动了关节结构、传感融合、机器视觉等方面的突破。1988年HelpMate标志服务机器人商业化的起点。进入21世纪,机器人加速向医疗、家庭、物流等领域扩展,波士顿动力的人形与四足机器人展现出极强的环境适应性与运动能力。

2025-08-19 09:40:37 1072

原创 Java-102 深入浅出 MySQL 锁机制图文详解:从表锁到行锁,从理论到实战

数据库的锁机制是确保数据一致性与并发安全的核心手段。悲观锁采用“先上锁再操作”的方式防止冲突,包括行级锁、表级锁、读锁和写锁,适用于银行转账、库存扣减等高一致性场景。乐观锁则通过版本号或时间戳在提交阶段校验数据是否被修改,适合读多写少的业务,如商品浏览。MySQL支持表级读写锁和行级共享锁(S锁)、排他锁(X锁),InnoDB引擎在更新时会自动加锁,且依赖索引避免锁表。选择锁机制应依据业务并发性、数据一致性要求和性能权衡。

2025-08-19 08:56:31 993

原创 AI-调查研究-54-大数据调研报告 行业应用场景+技术选型趋势全解析

大数据在金融、电商、互联网、通信、制造、医疗、教育等行业中实现深度融合,成为业务创新的核心引擎。金融领域以风险管理、智能投顾和保险科技为重点,构建Kafka+Flink等高实时架构。电商侧重推荐系统、库存预测和精细化营销,架构向云原生与AI驱动演进。互联网行业则聚焦社交推荐、搜索引擎、O2O调度等场景,全面推进Kappa架构与智能增强。其他行业如通信、制造和医疗亦在网络优化、预测性维护、精准医疗等方面加速部署大数据方案。Lakehouse、联邦学习、数据中台等新技术加快落地,推动数据驱动从支撑系统迈向业务

2025-08-18 09:36:30 1015

原创 Java-101 深入浅出 MySQL InnoDB 锁机制全景图:行锁原理、Next-Key Lock、Gap Lock 详解

MySQL 锁机制是保障数据一致性和并发性能的核心组件,主要分为表级锁、行级锁、页级锁三类,按粒度由粗到细,其中 InnoDB 默认采用行级锁以支持高并发事务处理。按锁类型区分,包括共享锁(S锁)和排他锁(X锁),用于读写控制,配合表级的意向锁(IS、IX)提升加锁效率。锁策略上,可分为悲观锁与乐观锁,分别适用于高冲突与低冲突场景。InnoDB 中行锁通过索引加锁实现,涉及 Record Lock、Gap Lock 和 Next-Key Lock,隔离级别不同会影响加锁行为,如 RR 下默认采用临键锁

2025-08-18 09:04:22 1114

原创 AI-调查研究-53-大数据调研报告 人才现状深度解析:经验分布、成长路径与行业趋势

大数据行业的人才结构呈现出年轻化与快速成长并存的特征。25-30岁群体是主力军,30-35岁逐渐成为中坚力量,而35岁以上占比偏低,反映出行业发展尚短。从经验分布看,5-8年经验人才最多,已具备完整项目与架构设计能力;10-15年经验群体开始主导大型平台建设并向管理岗位转型;15年以上资深专家稀缺,多为早期技术探索者。人才成长路径大致为:0-3年夯实开发技能,3-5年向数据仓库、实时计算或分析方向深化,5-8年进入架构与管理层,8年以上则承担战略级职责。整体上,大数据岗位需求旺盛,薪酬水平高。

2025-08-16 09:27:48 855

原创 Java-100 深入浅出 MySQL事务隔离级别:读未提交、已提交、可重复读与串行化

在数据库中,事务隔离级别用于控制并发事务之间的相互影响,是保证数据一致性的重要机制。SQL 标准定义了四种隔离级别:读未提交允许读取未提交的数据,性能高但可能出现脏读;读已提交只允许读取已提交数据,解决脏读问题,但仍可能出现不可重复读;可重复读是 MySQL InnoDB 的默认级别,可避免脏读和不可重复读,但可能产生幻读,InnoDB 通过 MVCC 与间隙锁减轻这一问题;串行化则完全串行化执行事务,彻底解决所有并发问题,但性能最差。在实际应用中,隔离级别的选择需在性能与一致性之间权衡:

2025-08-16 08:44:44 571

原创 AI-调查研究-52-大数据调研报告 前沿技术全景解析:Lakehouse、Data Mesh、Serverless 与新趋势

当前大数据技术正迎来新一轮变革,Lakehouse架构融合数据湖与数据仓库优势,依托Iceberg、Delta Lake、Hudi等事务型表格式,实现ACID事务、时间旅行、Schema演进等能力,显著降低成本并提升实时性。Data Mesh理念以领域驱动的数据所有权、数据即产品和自助式平台为核心,适应大型组织分布式数据治理需求。Apache Beam提供批流一体的跨平台编程模型,支持多引擎执行与事件时间处理。云原生与Serverless推动大数据平台向弹性、低运维、按需付费演进

2025-08-15 10:04:38 800

原创 Java-99 深入浅出 MySQL 并发事务控制详解:更新丢失、锁机制与MVCC全解析

并发事务在数据库中可能引发更新丢失、脏读、不可重复读和幻读等问题。更新丢失包括回滚覆盖和提交覆盖两种类型,分别因事务回滚或提交覆盖其他已提交数据而发生。防范措施包括锁机制、乐观/悲观并发控制和MVCC。全局排队机制通过串行执行事务消除并发异常,但性能受限,多用于一致性要求极高的场景。排他锁确保数据独占访问,防止其他事务在锁持有期间进行读写;读写锁则允许并发读、写独占,提高读多写少场景的性能。MVCC基于多版本存储,实现快照读,减少锁争用并提升并发性能,被InnoDB、PostgreSQL等广泛应用。

2025-08-15 09:49:30 827

原创 AI-调查研究-51-大数据调研报告 技术更迭史:被淘汰的框架与架构,以及背后的原因

在大数据技术迭代中,不少早期方案因性能、架构或功能限制而被淘汰。MapReduce(Hadoop v1)因磁盘I/O开销大、调度粗粒度、无法低延迟交互,已被内存计算和DAG调度的Spark,以及优化Hive查询的Tez取代。Storm虽开创实时流处理先河,但缺乏事件时间与状态管理,仅支持“至少一次”语义,难适应复杂实时需求,最终被具备精确一次语义、流批一体化的Flink取代。Pig因语法专有、可读性差而退出主流,Hive虽在批处理仍有优势,但核心计算已转向Spark SQL、Presto/Trino等高性能

2025-08-14 09:22:45 658

原创 Java-98 深入浅出 MySQL 深入理解数据库事务与锁机制:ACID特性全解析

必须满足ACID特性:原子性、一致性、隔离性、持久性。原子性确保事务中的操作要么全部成功,要么全部回滚,通过Redo/Undo日志和WAL技术实现;一致性保证事务前后数据库状态符合完整性约束,依赖外键、唯一索引及日志机制维护;隔离性确保并发事务互不干扰,常用隔离级别有读未提交、读已提交、可重复读、串行化,分别平衡性能与一致性需求;持久性保证已提交事务的修改永久保存,即使系统故障也能通过Redo日志恢复。InnoDB等存储引擎通过Buffer Pool、日志文件、检查点机制实现上述特性。

2025-08-14 09:09:12 818

原创 AI-调查研究-50-大数据调研报告 二十年演进:从Hadoop批处理到Flink实时计算的架构变革

2006年MapReduce推动了Hadoop批处理生态,但受限于高延迟和频繁落盘。2013年Spark以RDD内存计算和DAG执行显著提升性能,开启内存计算时代,并催生Impala、Presto等交互式SQL引擎。随后业务对时效性需求推动实时流计算发展,Storm开创先河,但因语义和状态管理受限被Flink取代。Flink原生事件驱动、低延迟、批流一体,成为实时处理主流。架构上,大数据平台从单体Hadoop转向YARN多引擎共享,再到云原生Kubernetes、存算分离与Serverless,实现弹性扩展

2025-08-13 11:07:19 1499

原创 Java-97 深入浅出 MySQL慢查询定位与优化攻略

通过log_queries_not_using_indexes记录未使用索引的查询,辅助发现潜在性能问题。慢查询日志记录执行时间、锁等待、扫描行数等关键信息,便于DBA分析瓶颈。分析方法包括使用文本编辑器直接查看日志,或借助mysqldumpslow等工具进行统计。判断是否使用索引可通过EXPLAIN查看执行计划,重点关注key、type、rows等字段,但使用索引不一定代表性能提升,还需结合过滤性与扫描行数评估。常见优化方案包括:精确选择查询列、合理建索引(优先高选择性列)、避免函数和隐式类型转换

2025-08-13 10:51:46 784

原创 AI-调查研究-49-大数据调研报告 发展历程:从概念诞生到多元化生态1997-2025

大数据发展始于1997年NASA提出概念,2001年Gartner提出“3V”模型奠定理论基础。2003-2006年谷歌发表GFS、MapReduce、Bigtable三大论文,引领分布式计算和存储革命。2005年Hadoop诞生,2008年成为Apache顶级项目并迅速普及,形成涵盖存储、计算、采集、调度和机器学习的完整生态。2011年后,大数据进入主流,NoSQL、Kafka等技术兴起,Spark凭借内存计算优势成为新一代引擎。2015年前后,大数据呈多元化发展,批处理、交互式分析、实时流计算并行演进,

2025-08-12 11:06:26 986

原创 Java-96 深入浅出 MySQL 索引与排序机制详解与优化实践 Filesort

利用索引排序(Index Order By)和文件排序(Filesort)。索引排序依赖索引的有序特性,性能优越,适用于 ORDER BY 列顺序与索引定义完全一致、方向相同且遵循最左前缀原则的场景;Filesort 则在无法直接利用索引时执行额外的排序操作,包括双路排序(先取排序键再回表)和单路排序(一次性取全列排序)。双路排序内存占用低,但需二次磁盘读取;单路排序减少磁盘访问,但可能因超出 sort_buffer_size 而产生临时文件。优化策略包括:设计与查询匹配的索引、使用覆盖索引。

2025-08-12 08:47:49 1085

原创 AI炼丹日志-32- memvid 大模型数据库!用视频存储+语义检索实现秒级搜索

该项目通过将文本编码为视频(每帧为文本的QR码),实现将数百万条文本数据存储在一个MP4文件中,支持离线语义检索。其核心创新在于“视频即数据库”,结合FAISS向量检索与视频帧解码,在海量数据中实现亚秒级查询,存储效率可提升至传统方案的10倍。系统支持自然语言查询、PDF导入、多模型切换,并提供上下文感知的聊天接口。轻量级架构仅需简单API即可集成,适合数字图书馆、企业知识库、科研论文管理等场景,尤其适用于离线、高隐私需求的应用。

2025-08-11 09:21:20 692

原创 Java-95 深入浅出 MySQL 回表查询与索引优化 覆盖索引、最左前缀原则、LIKE 查询与 NULL 值处理

深入解析了 MySQL InnoDB 存储引擎中的回表查询机制及相关优化策略。回表查询指在使用辅助索引检索数据时,通过索引找到主键值后,再回到聚簇索引获取完整行数据的过程。这种方式会增加额外 I/O 开销,在查询数据量大时影响性能。文中介绍了覆盖索引的原理与优势,指出通过建立包含所需查询列的复合索引可有效避免回表,提高查询速度。同时,详细阐述了最左前缀原则及其对索引利用的影响,提醒在设计复合索引时应遵循列顺序优化查询性能。此外,文章还分析了 LIKE 模糊查询与索引匹配规则、NULL 值对索引的影响。

2025-08-11 09:02:33 659

原创 AI炼丹日志-31- 千呼万唤始出来 GPT-5 发布!“快的模型 + 深度思考模型 + 实时路由”

GPT-5 不只是“更聪明一点”。它把 “快的模型 + 深度思考模型 + 实时路由” 整成一个统一系统,默认会在需要时自动“开动脑筋”。对编码和Agent场景是质变级升级;API 也上了更细的控制开关(reasoning_effort: "minimal"、verbosity、自由文本工具调用/CFG 约束)。官方已开始面向 ChatGPT 与 API 推送。

2025-08-08 09:05:48 781

原创 Java-94 深入浅出 MySQL EXPLAIN详解:索引分析与查询优化详解

EXPLAIN 命令在索引分析与查询优化中的作用。EXPLAIN 可输出 SELECT 语句的执行计划,帮助判断查询类型(select_type)、访问方式(type)、可能使用的索引(possible_keys)、实际使用的索引(key)、扫描行数(rows)、索引长度(key_len)及额外信息(Extra)。其中 type 值反映访问效率,从 ALL 全表扫描到 NULL(无需访问表)依次提升;possible_keys 显示潜在可用索引,key 则为实际使用索引;key_len 可判断复合索引的使用

2025-08-08 08:48:24 907

原创 AI-调查研究-48-中西医调研 结合治疗重大疾病的现实进展

西医在癌症与心血管疾病治疗上取得显著成果,依靠手术、放化疗、靶向与免疫疗法,极大提高了患者生存率。例如,乳腺癌早期五年生存率超90%,急性心梗院内死亡率降至5%以下。这些成就建立在大量随机对照试验与循证医学基础上,标准化指南推广确保治疗一致性。中医则在重大疾病治疗中主要发挥辅助作用,强调整体调理、扶正祛邪,能有效减轻西医治疗副作用、改善生活质量。如化疗配合中药可缓解疲劳、恶心,提升化疗完成率与生活质量评分。中西医结合模式正逐步推广,尤其在癌症康复与心血管康复期显示出协同优势。

2025-08-07 09:19:34 1032

原创 Java-93 深入浅出 MySQL 聚簇索引 vs 辅助索引:结构、原理与性能全解析

MySQL 中的聚簇索引是一种将数据行存储在 B+Tree 叶子节点中的索引结构,数据按主键顺序物理存储,InnoDB 引擎强制每张表必须有一个聚簇索引。若未定义主键,系统会选用第一个非空唯一索引或创建隐藏 rowid。辅助索引(非聚簇索引)则仅存储索引字段及主键值,查询时需“回表”查找完整数据。聚簇索引适用于主键查找、范围查询等场景,性能高但不宜使用UUID、长字符串作主键。合理利用辅助索引并结合覆盖索引可优化查询效率。主键越小越利于整体性能。

2025-08-07 08:58:12 1178

原创 AI-调查研究-47-中西医调研 优势互补的临床实践 病与慢性病

本文比较了中西医在常见病与慢性病治疗上的差异与优势。西医在感冒、发烧、肠胃炎等急性病中,依循标准化指南,强调对症用药(如布洛芬退热)、支持治疗(补液、休息)及明确的细菌/病毒鉴别,起效快、循证充分。中医则依辨证论治(风寒、风热等)配合复方中药、针灸等综合干预,重视整体调理与自愈力激发,不良反应低。慢性病方面,西医依循分级管理与循证用药(如二甲双胍、高血压五大类降压药、RA生物制剂)控制病情、降低并发症风险;中医则从体质调节入手,通过辨证施治、复方中药及外治法改善症状、延缓病程。中西医结合已成为趋势:急症优先

2025-08-06 09:13:09 1107

原创 Java-92 深入浅出 MySQL 索引原理与优化详解:B+Tree、Hash、二分查找全解析

索引是数据库中用于加速查询的一种特殊数据结构,会占用额外存储并增加维护开销。MySQL 常用 B+Tree 索引,数据存储于 16KB 数据页并按有序方式组织,支持高效的等值、范围、排序及连接查询。B+Tree 的非叶子节点仅存储键值,叶子节点存储完整数据并通过双向链表相连,极大优化了范围扫描性能。二分查找在有序数据中可快速定位目标,时间复杂度 O(log n),但更新成本高。Hash 索引适用于等值查询,范围查询需全表扫描;InnoDB 提供自适应哈希索引,对热点数据自动建立哈希映射。

2025-08-06 08:55:13 1115

原创 AI-调查研究-46-多维调查报告 营养补充的系统性策略 补充的适用情景

额外补充营养素应基于个体化评估,而非盲目跟风。若日常饮食及多维补充仍不足,或存在特定生理阶段(如孕期、哺乳期、老年)及疾病风险(如骨质疏松、缺铁性贫血、维D缺乏),需在医生指导下定向加量。常见需额外补充的包括钙、维生素D、铁、B₁₂、Omega-3等,素食者、节食减肥及日照不足人群尤需关注。慢病患者应结合用药影响(如二甲双胍致B₁₂缺乏、他汀致辅酶Q10下降)调整方案,并定期监测指标。补充应遵循“缺啥补啥、量宜适中”,注意营养素间相互作用与过量风险。合理补充可提升健康收益,反之则可能适得其反。

2025-08-05 09:32:52 651

原创 Java-91 深入浅出 MySQL索引类型与实战详解:原理、分类、应用与优化

索引是数据库中加速数据检索的重要结构,可显著提升查询与排序性能。按存储结构分,有B+Tree索引(支持范围查询、默认类型)、Hash索引(等值查询高效)、FULLTEXT索引(全文搜索)、RTree索引(空间数据查询)。按应用层分,有普通索引(最基础,无唯一性要求)、唯一索引(值必须唯一,可为NULL)、主键索引(唯一且非空,仅一列或组合一组)、复合索引(多列组合,遵循最左前缀原则)。按存储方式分,有聚簇索引(叶节点存行数据,如InnoDB主键)与非聚簇索引(叶节点存主键值,需回表查询)。

2025-08-05 08:46:59 845

原创 AI-调查研究-45-多维调查报告 多维补充剂≠万能药 慢性病预防

多项大型临床研究与Meta分析表明,普通健康人群长期服用多种维生素补充剂,在预防心血管疾病、癌症、糖尿病及认知衰退方面总体效果有限。例如PHS II研究显示,多维对心肌梗死、中风风险无显著影响,仅在部分癌症高风险男性中观察到轻微降幅。USPSTF明确不建议依赖维生素补充剂预防慢病,且高剂量β-胡萝卜素、维生素E等可能增加肺癌或出血性中风风险。认知领域证据矛盾,最新COSMOS-Mind试验提示老年人认知衰退或可延缓,但机制与适用人群尚不明确。总体结论是:多维补充更适合存在明确营养缺乏或特殊生理需求的人群。

2025-08-04 09:36:09 783

原创 Java-90 深入浅出 MySQL Binlog 全解析:记录模式、主从复制与数据恢复详解

MySQL Binlog(二进制日志)用于记录所有数据库结构变更(DDL)及数据修改(DML),不包含只读操作。它以事件形式保存,支持三种记录模式:ROW(记录行变化,数据一致性高)、STATEMENT(记录SQL语句,节省空间)、MIXED(混合模式,兼顾两者)。Binlog 是主从复制的核心基础,主库将事件传输给从库重放,实现读写分离、负载均衡及灾备;同时支持数据恢复,可配合 mysqlbinlog 工具按时间或位置点精确回放,实现增量恢复。其文件由多种 Log Event 组成

2025-08-04 09:19:12 1019

原创 AI-调查研究-45-多维调查报告 男女营养补充的关键差异:铁、钙与叶酸的科学指南

男女在营养补充上的主要差异集中在铁、钙、叶酸等关键营养素。育龄女性因月经失血,每日需约18mg铁,适合含铁的多维制剂;成年男性及绝经后女性仅需8mg铁,应选低铁或无铁配方,避免铁过载风险。女性骨密度在30岁达峰值后下降,25岁起应确保每日1000-1200mg钙摄入,并配合维生素D促进吸收;男性50岁后亦需关注骨质流失。叶酸对备孕及孕期女性尤为重要,应在孕前3个月开始补充400μg/天,高风险人群需更高剂量。男性则更需关注锌、镁以支持生殖及肌肉功能。维生素B族、维生素C需求差异不大,但特殊人群如老年人

2025-08-02 09:22:29 759

原创 Java-89 深入浅出 MySQL 搞懂 MySQL Undo/Redo Log,彻底掌握事务回滚与持久化

Undo Log(回滚日志)与 Redo Log(重做日志)是 MySQL InnoDB 实现事务的核心机制。Undo Log 用于记录数据修改前的旧值,支持事务回滚与 MVCC(多版本并发控制),保证事务的原子性。事务执行前将原值写入 Undo Log,回滚时按 LIFO 恢复数据,并支持快照读。长事务会导致 Undo 堆积,占用空间。Redo Log 用于记录已提交事务的物理变更,确保事务的持久性。修改先写入 Redo Buffer,再根据 innodb_flush_log_at_trx_commit。

2025-08-02 09:09:20 965

原创 AI-调查研究-44-多维调查报告 鱼油、钙片、维C到底要不要额外吃?

鱼油、钙片、维生素C等是否需要额外补充。鱼油含Omega-3脂肪酸(EPA+DHA),有益心血管与大脑健康,但多维不含,应优先通过每周2-3次富含脂肪鱼类摄入,高危人群可在医生指导下补充。钙是骨骼与多种生理功能的关键,中国人普遍膳食钙不足,多维提供的钙量有限,建议结合饮食和必要的钙剂补充,并注意与维生素D、K₂协同,分次摄入避免过量。维生素C参与免疫、抗氧化和胶原合成,普通人通过水果蔬菜即可满足需求,高剂量补充对健康人防病作用有限,仅在吸烟、饮食不足或特殊病理状态下考虑补剂。总体建议:普通健康人优先食补,针

2025-08-01 09:31:21 818

原创 Java-88 深入浅出 MySQL InnoDB 存储结构全解析:表空间、段、区、页与行格式

InnoDB 数据文件采用层级化结构管理,从表空间(Tablespace)到段(Segment)、区(Extent)、页(Page)再到行(Row),逐级组织存储以兼顾性能与管理便利性。表空间可为独立表或系统共享空间,段则按用途分为数据段、索引段与回滚段;区为1MB固定大小,用于批量分配减少碎片;页为16KB,是最小管理单元,存储数据、索引或元信息;行记录包含事务ID、回滚指针、字段指针及数据内容。InnoDB 支持 Antelope(REDUNDANT、COMPACT)与 Barracuda

2025-08-01 09:17:02 816

原创 AI-调查研究-43-多维调查报告 年轻人和老年人到底该不该吃多维?

多种维生素补充剂(简称“多维”)可用于填补因饮食不均衡导致的营养缺口,尤其适用于老年人、素食者、孕妇及久坐不晒太阳者等特定人群。然而,研究显示,对营养状况良好的成年人,多维补充并不显著降低慢性病或死亡率。年轻人如饮食均衡、摄入多样、生活规律,通常无需额外补充。老年人因吸收功能下降、慢性病或药物影响,补充多维可能有益。总体建议是:优先通过饮食获取营养,确需补充时应在专业指导下、按需适量、定期评估,避免过量和盲目服用。

2025-07-31 09:04:47 973

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除