SPPnet 详解

SPPNet由何凯明提出,通过空间金字塔池化层解决全连接层对固定大小输入的需求。SPPNet在训练时采用single-size和Multi-size策略,加速收敛。它先进行一次性特征提取,然后对候选区域进行SPP处理,显著提高目标检测的速度。相比RCNN,SPPNet减少了大量重复计算,降低了训练时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RCNN系列:RCNN,SPPNet,Fast RCNN,Faster RCNN,R-FCN。

 

  前不久刚刚看完rcnn和fast rcnn,对目标检测的学习更进一步。sppNet简介:

作者: 何凯明

   2016年加入成为FAIR(facebook 微软研究员),2011年获得博士学位,主要兴趣和研究在计算机视觉和深度学习。

获得cpvr和iccv多个奖项。

 

SPPNet为何出现?

之前的网络,比如LeNet,AlexNet,ZF,VGG等,它们的输入都是固定大小的,为什么要固定大小呐?原因就在最后连接的全连接层上。全连接层的输入一定是固定大小的。这一点很容易理解,因为全连接层网络就是传统的神经网络,传统的神经网络的输入层必定是固定大小的。而卷积神经网络的conv层的输入并不需要固定大小,

那么conv层不用固定大小,FC层的输入又要固定大小,那么在这两者之间加上一层SPP即可解决这个问题了。

spp的实现

黑色图片代表卷

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值