RCNN系列:RCNN,SPPNet,Fast RCNN,Faster RCNN,R-FCN。
前不久刚刚看完rcnn和fast rcnn,对目标检测的学习更进一步。sppNet简介:
作者: 何凯明
2016年加入成为FAIR(facebook 微软研究员),2011年获得博士学位,主要兴趣和研究在计算机视觉和深度学习。
获得cpvr和iccv多个奖项。
SPPNet为何出现?
之前的网络,比如LeNet,AlexNet,ZF,VGG等,它们的输入都是固定大小的,为什么要固定大小呐?原因就在最后连接的全连接层上。全连接层的输入一定是固定大小的。这一点很容易理解,因为全连接层网络就是传统的神经网络,传统的神经网络的输入层必定是固定大小的。而卷积神经网络的conv层的输入并不需要固定大小,
那么conv层不用固定大小,FC层的输入又要固定大小,那么在这两者之间加上一层SPP即可解决这个问题了。
spp的实现
黑色图片代表卷