HDU-1575-Tr A【矩阵快速幂】

本文介绍了一道关于矩阵快速幂的算法题目,旨在求解方阵A的k次方后的迹(主对角线元素之和)对9973取模的值。通过给出完整的C++代码实现,详细展示了如何利用矩阵快速幂的方法高效解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:点击打开链接

Tr A

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4552    Accepted Submission(s): 3431


Problem Description
A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
 

Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
 

Output
对应每组数据,输出Tr(A^k)%9973。
 

Sample Input
  
2 2 2 1 0 0 1 3 99999999 1 2 3 4 5 6 7 8 9
 

Sample Output
  
2 2686

思路:矩阵快速幂裸题

#include<cstdio>
#include<algorithm>
#include<cstring>
#define MOD 9973
using namespace std;
int n,k;
struct Matrix
{
	int a[11][11];
	int r,c;
};
Matrix ori,res;
void init()
{
	memset(res.a,0,sizeof(res.a));
	ori.r=ori.c=n;
	res.r=res.c=n;
	for(int i=1;i<=n;i++)
	{
		res.a[i][i]=1;
		for(int j=1;j<=n;j++)
			scanf("%d",&ori.a[i][j]);
	}
}
Matrix multi(Matrix x,Matrix y)
{
	Matrix z;
	memset(z.a,0,sizeof(z.a));
	z.r=x.r; z.c=y.c;
	for(int i=1;i<=x.r;i++)
	{
		for(int k=1;k<=x.c;k++)
		{
			if(x.a[i][k]==0)	continue;
			for(int j=1;j<=y.c;j++)
			{
				z.a[i][j]=(z.a[i][j]+x.a[i][k]*y.a[k][j]%MOD)%MOD;
			}
		}
	}
	return z;
}
void Matrix_pow(int k)
{
	while(k)
	{
		if(k&1)
			res=multi(res,ori);
		ori=multi(ori,ori);
		k>>=1;
	}
	int ans=0;
	for(int i=1;i<=res.c;i++)
		ans=(ans+res.a[i][i])%MOD;
	printf("%d\n",ans);
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d",&n,&k);
		init();
		Matrix_pow(k);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值