【NO.5】LeetCode HOT 100—5. 最长回文子串

本文介绍了两种解决最长回文子串问题的方法:动态规划和中心扩展。动态规划通过状态转移方程找到回文子串,时间复杂度为O(n^2),空间复杂度也为O(n^2);中心扩展法从每个字符为中心向两边扩展,空间复杂度为O(1),同样时间复杂度为O(n^2)。

5. 最长回文子串

5. 最长回文子串

给你一个字符串 s,找到 s 中最长的回文子串。

如果字符串的反序与原始字符串相同,则该字符串称为回文字符串。

示例 1:

输入:s = “babad”
输出:“bab”
解释:“aba” 同样是符合题意的答案。
示例 2:

输入:s = “cbbd”
输出:“bb”

提示:

1 <= s.length <= 1000
s 仅由数字和英文字母组成

解题

方法一:动态规划

动态规划,dp[i][j] 表示从i到j是回文。

状态转移方程:P(i,j)=P(i+1,j−1)∧(Si==Sj)
也就是说,只有 s[i+1:j−1] 是回文串,并且 s 的第 i 和 j 个字母相同时,s[i:j]s[i:j]s[i:j] 才会是回文串。

注意:在状态转移方程中,我们是从长度较短的字符串向长度较长的字符串进行转移的,因此一定要注意动态规划的循环顺序。

最终的答案即为所有 P(i,j)=true中 j−i+1(即子串长度)的最大值

// 时间O(n^2),空间O(n^2)
class Solution {
   
   
    public String longestPalindrome(String s) {
   
   
        int length = s.length();
        if (length < 2) {
   
   
            return s;
        }
        boolean[][] dp = new boolean[length][length];
        // 最长回文长度一开始为1
        int maxLength = 1;
        int index = 0;
         // 将字符串转为char数组,方便遍历
        char[] chars = s.toCharArray();
        // 特殊 对角线肯定是
        for (int i = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悬浮海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值