LangChain入门:23.通过使用代理实现自然语言查询数据库功能

本文介绍了如何利用LangChain库,通过自然语言处理技术让非技术人员能以日常语言查询数据库,简化了与数据库的交互。用户提问,大语言模型生成SQL查询,执行查询并转化结果为自然语言,降低了查询难度。文章通过一个鲜花销售的案例,展示了如何创建数据库表,并用LangChain的SQL代理进行查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一直以来,在计算机编程和数据库管理领域,所有的操作都需要通过严格、专业且结构化的语法来完成。这就是结构化查询语言(SQL)。当你想从一个数据库中提取信息或进行某种操作时,你需要使用这种特定的语言明确地告诉计算机你的要求。这不仅需要我们深入了解正在使用的技术,还需要对所操作的数据有充分的了解。

你需要拥有一个程序员基本的技能和知识才能有效地与计算机交互。不过,随着人工智能的兴起和大语言模型的发展,情况开始发生变化。

现在,我们正进入一个全新的编程范式,其中机器学习和自然语言处理技术使得与计算机的交互变得更加自然。

这意味着,我们可以用更加接近我们日常话语的自然语言来与计算机交流。例如,不用复杂的 SQL 语句查询数据库,我们可以简单地问:“请告诉我去年的销售额是多少?” 计算机能够理解这个问题,并给出相应的答案。这种转变不仅使得非技术人员更容易与计算机交互,还为开发者提供了更大的便利性。简而言之,我们从“告诉计算机每一步怎么做”,转变为“告诉计算机我们想要什么”,整个过程变得更加人性化和高效。

新的数据库查询范式
下面这个图,非常清晰地解释了这个以 LLM 为驱动引擎,从自然语言的(模糊)询问,到自然语言的查询结果输出的流程。
在这里插入图片描述
这种范式结合了自然语言处理和传统数据库查询的功能,为用户提供了一个更为直观和高效的交互方式。下面我来解释下这个过程。

  1. 提出问题:用户用自然语言提出一个问题,例如“去年的总销售额是多少?”。
  2. LLM 理解并转译:LLM 首先会解析这个问题,理解其背后的意图和所需的信息。接着,模型会根据解析的内容,生成相应的 SQL
    查询语句,例如 “SELECT SUM(sales) FROM sales_data WHERE year =
    ‘last_year’;”。
  3. 执行 SQL 查询:生成的 SQL 查询语句会被发送到相应的数据库进行执行。数据库处理这个查询,并返回所需的数据结果。
  4. LLM 接收并解释结果:当数据库返回查询结果后,LLM 会接收到这些数据。然后,LLM
    会开始解析这些数据,并将其转化为更容易被人类理解的答案格式。
  5. 提供答案:最后,LLM 将结果转化为自然语言答案,并返回给用户。例如“去年的总销售额为 1,000,000 元”。

你看,用户不需要知道数据库的结构,也不需要具备编写 SQL 的技能。他们只需要用自然语言提问,然后就可以得到他们所需的答案。这大大简化了与数据库的交互过程,并为各种应用场景提供了巨大的潜力。

实战案例背景信息
下面我们将通过 LangChain 实现这个新的数据库应用开发范式。

在这个实战案例中,我们的所有业务数据都存储在数据库中,而目标则是通过自然语言来为销售的每一种鲜花数据创建各种查询。这样,无论是员工还是顾客,当他们想了解某种鲜花的价格时,都可以快速地生成适当的查询语句。

这就大大简化了查询过程和难度。
首先,这个应用可以被简单地用作一个查询工具,允许员工在存货或销售系统中快速查找价格。员工不再需要记住复杂的查询语句或进行手动搜索,只需选择鲜花种类,告诉系统他所想要的东西,系统就会为他们生成正确的查询。

其次,这个模板也可以被整合到一个聊天机器人或客服机器人中。顾客可以直接向机器人询问:“红玫瑰的价格是多少?” 机器人会根据输入内容来调用 LangChain 和 LLM,生成适当的查询,然后返回确切的价格给顾客。这样,不仅提高了服务效率,还增强了用户体验。

了解完项目的背景信息,下面我们就开始行动吧!

创建数据库表
首先,让我们创建一系列的数据库表,存储易速鲜花的业务数据。

这里,我们使用 SQLite 作为我们的示例数据库。它提供了轻量级的磁盘文件数据库,并不需要单独的服务器进程或系统,应用程序可以直接与数据库文件交互。同时,它也不需要配置、安装或管理,非常适合桌面应用、嵌入式应用或初创企业的简单需求。

SQLite 支持 ACID(原子性、一致性、隔离性、持久性),这意味着你的数据库操作即使在系统崩溃或电源失败的情况下也是安全的。虽然 SQLite 被认为是轻量级的,但它支持大多数 SQL 的标准特性,包括事务、触发器和视图。

因此,它也特别适用于那些不需要大型数据库系统带来的全部功能,但仍然需要数据持久性的应用程序,如移动应用或小型 Web 应用。当然,也非常适合我们做 Demo。

sqlite3 库,则是 Python 内置的轻量级 SQLite 数据库。通过 sqlite3 库,Python 为开发者提供了一个简单、直接的方式来创建、查询和管理 SQLite 数据库。当你安装 Python 时,sqlite3 模块已经包含在内,无需再进行额外的安装。

基于这个 sqlite3 库,创建业务数据的代码如下:

# 导入sqlite3库
import sqlite3

# 连接到数据库
conn = sqlite3.connect(
<think>首先,用户在询问使用Langchain进行爬虫操作的教程或实现方法。Langchain是一个用于构建和使用大型语言模型(如ChatGPT)的框架。用户引用了三个来源:[^1]、[^2]和[^3],但系统指出这些仅供参考,用户真正的需求是了解Langchain爬虫的相关操作。从用户消息中:-引用[1]:"LangChain之网络爬虫",提到了一个学习路线图和学习规划。-引用[2]:"LangChain实战案例详解:URL加载网页内容的爬虫功能封装",描述了如何封装爬虫功能。-引用[3]:类似[1],强调分享资源。系统指令要求:-使用中文回答。-结构清晰,帮助用户逐步解决问题。-确保回答真实可靠。-引用相关内容末尾添加引用标识,例如[^1]。-生成相关问题。-遵守LaTeX格式:行内数学表达式用$...$,独立公式用$$...$$,但我在这里处理爬虫主题,可能不需要数学,所以可能不适用。用户真正的需求:从历史中看,用户说"我想了解或使用Langchain进行爬虫相关操作请问langchain爬虫教程或langchain爬虫实现"。所以,我需要提供一个关于如何用Langchain实现爬虫功能的教程或指南。作为AI,我知道Langchain提供工具来与网络交互,比如爬取网页内容。常见模块可能包括使用`requests`或类似库来爬取数据,然后使用LLMs处理数据。结构清晰的回答:1.**介绍Langchain爬虫功能**:解释Langchain如何用于爬虫。2.**逐步实现指南**:-安装Langchain和相关依赖。-使用Langchain的工具或代理进行爬虫。-可能的代码示例。3.**封装爬虫功能**:基于引用[2],描述如何封装爬虫。4.**学习资源**:提供建议的学习材料或资源。5.**注意事项**:讨论爬虫的伦理问题和法律限制。6.**生成相关问题**:在结尾添加相关问题。确保回答真实可靠:-基于我对Langchain的知识:Langchain代理(agents)和工具(tools),可以集成外部API或库如`requests`来执行爬虫。-常见方法是使用`Tool`类来定义自定义爬虫函数。可能的代码示例:-使用Python,编写一个简单的爬虫函数,并使用Langchain代理调用它。-参考标准做法,避免任何非法建议。引用:-用户提供的引用[^1]、[^2]、[^3],我应该在相关内容末尾添加这些。例如,如果提到学习资源,可以加[^1]。响应格式:-由于是用户可见层,结构应该像之前的示例:"相关主题",然后内容,最后"相关问题"。-在示例中是"快速排序",然后是解释,代码块,最后"§§相关问题§§"。完整结构:-标题:如"Langchain爬虫实现教程"-介绍-步骤指南-代码示例(使用代码块)-资源建议-结尾:相关问题生成相关问题:-如"Langchain爬虫的优化方法?"或"Langchain爬虫的实际应用案例?"最终响应:-使用中文。-开头直接切入主题。</think> ### Langchain爬虫实现指南 Langchain是一个用于构建和集成大型语言模型(LLM)应用的框架,它支持网络爬虫功能,允许开发通过URL爬取网页内容、提取并处理数据。以下是基于真实文档和实践案例的逐步实现说明(基于引用内容综合整理[^1][^2][^3])。整个过程分为安装、封装爬虫工具、代码实现和安全注意事项。 --- #### 1. **环境安装与基本配置** 在Python环境中安装Langchain及相关依赖(确保Python≥3.8)。 ```bash pip install langchain langchain-openai requests beautifulsoup4 # 引入网页解析库 ``` --- #### 2. **逐步实现爬虫功能** Langchain通过封装HTTP请求工具来实现爬虫。核心步骤包括: - **定义爬虫工具**:创建一个自定义`Tool`来执行爬取和解析。 - **集成LLM代理**:使用Langchain的`AgentExecutor`调度工具。 **完整代码示例(封装URL爬虫功能)**: ```python from langchain.agents import AgentExecutor, Tool, create_react_agent from langchain_community.utilities import Requests from langchain_openai import ChatOpenAI from bs4 import BeautifulSoup # 步骤1:自定义爬虫工具(封装请求和解析) def url_crawler(url: str) -> str: """爬取URL页面内容并提取文本""" try: response = Requests().get(url) soup = BeautifulSoup(response.content, 'html.parser') # 移除脚本和样式标签,保留关键文本 for script in soup(['script', 'style']): script.decompose() return soup.get_text(separator=' ', strip=True) except Exception as e: return f"爬取失败:{str(e)}" # 步骤2:创建Langchain工具 tools = [ Tool( name="Web Crawler", func=url_crawler, description="爬取指定URL的网页内容,并返回纯文本数据。输入必须是完整URL(例如:'https://example.com')。" ) ] # 步骤3:初始化代理并执行 agent = create_react_agent( llm=ChatOpenAI(model="gpt-3.5-turbo", temperature=0), # 使用LLM调度工具 tools=tools, ) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) # 示例调用:爬取网页并提取内容 result = agent_executor.invoke({"input": "爬取https://example.com的内容"}) print(result["output"]) ``` **关键点解析**: - **自定义函数封装**:`url_crawler` 使用`requests`发起HTTP请求,`BeautifulSoup`解析HTML并提取文本(模拟引用[2]的封装方式)。 - **代理调度机制**:通过`AgentExecutor`,Langchain代理自动选择工具处理用户输入(如URL),效率较高[^1]。 - **输出处理**:返回纯文本内容,便于后续LLM分析或存储。 --- #### 3. **学习资源与深入建议** 根据引用内容[^1][^3],推荐以下资源来系统学习: - **入门教程**: - Langchain官方文档([爬虫模块部分](https://python.langchain.com/docs/integrations/tools/requests))。 - 视频教程:配套AGI大模型学习视频(涵盖基础到实战)[^1],关注"LangChain网络爬虫"专题。 - **资料下载**: - AI大模型学习思维导图和书籍手册(如引用所述),可在文末领取免费资源[^3]。 - **进阶优化**: - 添加速率限制(如`time.sleep(1)`)避免封IP。 - 集成`langchain-chroma`存储爬取数据到向量数据库。 --- #### 4. **注意事项** - **合法合规**:确保爬取目标网站允许爬虫(检查`robots.txt`),避免侵权。Langchain工具仅提供框架,责任在开发者[^2]。 - **性能问题**:大规模爬虫建议使用异步请求库(如`aiohttp`),Langchain支持自定义异步工具封装。 - **错误处理**:代码中添加`try-except`块,如网络异常时返回友好错误信息。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hugo_Hoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值