构建LangChain应用程序的示例代码:34、LangChain中的HumanInputLLM使用指南

HumanInputLLM的模拟使用

类似于假的语言模型(LLM),LangChain 提供了一个伪语言模型类,可以用于测试、调试或教育目的。这允许你模拟对LLM的调用,并模拟如果人类接收到提示会如何响应。

在本示例中,我们将介绍如何使用这个功能。

我们首先在代理中使用HumanInputLLM。

from langchain_community.llms.human import HumanInputLLM
from langchain.agents import AgentType, initialize_agent, load_tools

# 由于我们将在这个笔记本中使用WikipediaQueryRun工具,如果你还没有安装wikipedia包,可能需要先安装。
%pip install wikipedia

# 加载工具
tools = load_tools(["wikipedia"])

# 初始化HumanInputLLM,使用lambda函数打印提示
llm = HumanInputLLM(
    prompt_func=lambda prompt: print(
        f"\n===PROMPT====\n{prompt}\n=====END OF PROMPT======"
    )
)

# 初始化代理,使用加载的工具和语言模型
agent = initialize_agent(
    tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)

# 运行代理,查询"What is 'Bocchi the Rock!'?"
agent.run("What is 'Bocchi the Rock!'?")

总结
本文介绍了如何使用LangChain社区的HumanInputLLM类来模拟人类输入,以便于在不调用真实语言模型的情况下测试和调试。通过定义一个简单的提示打印函数,我们能够模拟语言模型接收到的输入,并观察代理如何处理这些输入。

扩展知识

  • LangChain:是一个开源的库,用于构建和使用语言模型的应用程序。
  • LLM(Language Model):语言模型,通常指的是预训练的深度学习模型,能够生成或理解自然语言文本。
  • AgentType.ZERO_SHOT_REACT_DESCRIPTION:代理类型,指的是在没有经过特定任务训练的情况下,能够根据描述立即执行任务的代理。
  • wikipedia包:一个Python包,用于访问维基百科的API,获取维基百科页面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hugo_Hoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值