构建LangChain应用程序的示例代码:35、如何使用假设性文档嵌入(HyDE)技术来改善文档索引教程

使用假设性文档嵌入(HyDE)改善文档索引

摘要

本文介绍了如何使用假设性文档嵌入(Hypothetical Document Embeddings,简称HyDE),这是根据一篇论文中描述的技术。HyDE 是一种嵌入技术,它接收查询,生成一个假设性的答案,然后嵌入该生成的文档,并将其作为最终示例使用。

代码及注释

from langchain.chains import HypotheticalDocumentEmbedder, LLMChain
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAI, OpenAIEmbeddings

# 初始化基础嵌入模型
base_embeddings = OpenAIEmbeddings()
# 初始化语言模型
llm = OpenAI()

# 使用web_search提示加载HyDE
embeddings = HypotheticalDocumentEmbedder.from_llm(llm, base_embeddings, "web_search")

# 现在我们可以像使用任何嵌入类一样使用它
result 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hugo_Hoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值