
LangChain教程入门
文章平均质量分 73
LangChain是一个用于开发由语言模型支持的应用程序的框架。它使应用程序能够:
具有上下文感知能力:将语言模型与上下文源连接起来(提示说明、几个镜头示例、响应的内容等)
Reason:依靠语言模型进行推理(关于如何根据提供的上下文回答、采取什么操作等)
Hugo_Hoo
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LangChain入门:10.基于Chain of Thought构建店铺运营助手
在本次实战中,我们开发了一个 AI 运营助手,它能根据用户的需求进行推理和生成答案。能够按部就班地思考,理解用户的需求,并给出最合适的花卉推荐。原创 2024-04-02 15:05:53 · 667 阅读 · 0 评论 -
LangChain入门:8.打造自动生成广告文案的应用程序
利用LangChain框架的模板管理、变量提取和检查、模型切换以及输出解析等优势,我们可以轻松地构建出一个自动生成广告文案的应用程序。这不仅提高了文案生成的效率和准确性,还为用户提供了更好的体验,带来了更多的商业价值。原创 2024-04-01 10:00:00 · 1213 阅读 · 0 评论 -
LangChain入门:7.打造企业内部员工知识库问答系统
在这篇博文中,我们将深入探讨如何利用LangChain打造一个企业内部员工知识库问答系统的开发框架以及核心实现机制。作为一个旨在企业内部提供员工所需信息的知识库问答系统,其重要性在于提高员工的工作效率,确保他们能够及时准确地获取所需信息。原创 2024-03-29 14:23:20 · 2071 阅读 · 0 评论 -
LangChain入门:24.通过Baby AGI实现自动生成和执行任务
随着 ChatGPT 的崭露头角,我们迎来了一种新型的代理——Autonomous Agents(自治代理或自主代理)。这些代理的设计初衷就是能够独立地执行任务,并持续地追求长期目标。在 LangChain 的代理、工具和记忆这些组件的支持下,它们能够在无需外部干预的情况下自主运行,这在真实世界的应用中具有巨大的价值。目前,GitHub 上已有好几个备受关注的“网红”项目,如 AutoGPT、BabyAGI 和 HuggingGPT,它们都代表了自治代理的初步尝试。原创 2024-04-25 16:12:07 · 2042 阅读 · 0 评论 -
LangChain入门:23.通过使用代理实现自然语言查询数据库功能
最后,我们关闭与数据库的连接。首先,它思考之后,将先确定第一个 action 是使用工具 sql_db_list_tables,然后观察该工具所返回的表格,思考后再确定下一个 action 是 sql_db_schema,也就是创建 SQL 语句,逐层前进,直到得到答案。员工不再需要记住复杂的查询语句或进行手动搜索,只需选择鲜花种类,告诉系统他所想要的东西,系统就会为他们生成正确的查询。下面这个图,非常清晰地解释了这个以 LLM 为驱动引擎,从自然语言的(模糊)询问,到自然语言的查询结果输出的流程。原创 2024-04-19 10:00:00 · 979 阅读 · 0 评论 -
LangChain入门:22.使用 arXiv 工具开发科研助理
arXiv是一个自1991年起就服务于学术界的预印本库,它允许研究者在论文正式出版前上传和分享研究成果。最初专注于物理学领域,arXiv现已扩展至数学、计算机科学、生物学、经济学等多个学科。预印本的上传和分享,加速了学术发现的传播,促进了全球研究者的交流与合作。LangChain是一个先进的自然语言处理工具,它可以帮助科研助理自动化和优化各种研究任务。通过将arXiv集成到LangChain中,我们可以创建一个强大的科研助理,它可以帮助研究人员更快地获取和分析学术资源。原创 2024-04-18 10:00:00 · 854 阅读 · 0 评论 -
LangChain入门:21.探索使用 Plan and execute 代理
在人工智能领域,LangChain的Plan and Execute代理代表了一种前沿的自动化解决方案,它通过分离规划和执行阶段,为复杂任务的处理提供了一种新颖而有效的途径。本文将深入探讨Plan and Execute代理的工作原理,并通过实际案例展示其应用。原创 2024-04-17 10:00:00 · 2531 阅读 · 0 评论 -
LangChain入门:20.探索使用 Self-Ask with Search 代理
Self-Ask with Search代理利用了一种创新的“追问”和“中间答案”策略,以辅助大型语言模型(如GPT-3.5)解决那些需要多步推理或多次查询的问题。这种代理特别适合处理多跳问题,即那些不能通过单一查询直接得到答案的问题。Self-Ask with Search代理展示了LangChain在对话代理领域的创新能力。通过结合搜索工具和逐步逼近的策略,它能够有效地解决多跳问题,为用户提供准确、及时的答案。原创 2024-04-16 15:47:14 · 1085 阅读 · 0 评论 -
LangChain入门:19.探索结构化工具对话
通过本文的介绍,我们了解到结构化工具对话代理的强大功能和灵活性。它不仅可以帮助我们自动化日常任务,还可以在数据处理和分析中发挥重要作用。随着技术的不断进步,我们期待看到更多创新的应用出现。原创 2024-04-16 15:24:55 · 571 阅读 · 0 评论 -
LangChain入门:18.使用ReAct 框架进行生成推理痕迹和任务特定行动来实现更大的协同作用
通过ReAct框架和思维链的结合使用,LangChain中的智能代理能够自动形成一个完善的思考与行动链条,并给出正确的答案。这个思维链条中,智能代理有思考、有观察、有行动,成功通过搜索和计算两个操作,完成了任务。这种能力不仅提高了代理的效率,也增强了其在复杂对话场景中的适应性和实用性。随着技术的不断发展,我们期待看到更多创新的应用出现,以推动智能对话系统的进步,并为用户提供更加丰富和智能的交互体验。原创 2024-04-11 15:54:35 · 2625 阅读 · 0 评论 -
LangChain入门:17.使用 ConversationChain实现对话记忆功能
不难看出,在第二回合,记忆机制完整地记录了第一回合的对话,但是在第三回合,它察觉出前两轮的对话已经超出了 300 个字节,就把早期的对话加以总结,以节省 Token 资源。有了记忆机制,LLM 能够了解之前的对话内容,这样简单直接地存储所有内容为 LLM 提供了最大量的信息,但是新输入中也包含了更多的 Token(所有的聊天历史记录),这意味着响应时间变慢和更高的成本。在给定的例子中,设置 k=1,这意味着窗口只会记住与 AI 之间的最新的互动,即只保留上一次的人类回应和 AI 的回应。原创 2024-04-10 15:07:02 · 5506 阅读 · 0 评论 -
LangChain入门:16.用RouterChain确定提问意图,精准分类问题
这三个测试,分别被路由到了三个不同的目标链,其中两个是我们预设的“专家类型”目标链,而第三个问题:如何考入哈佛大学?在这里,我们会用 LLMRouterChain 和 MultiPromptChain(也是一种路由链)组合实现路由功能,该 MultiPromptChain 会调用 LLMRouterChain 选择与给定问题最相关的提示,然后使用该提示回答问题。构建多提示链:使用 MultiPromptChain 将 LLM 路由链、目标链和默认链组合在一起,形成一个完整的决策系统。原创 2024-04-09 14:49:35 · 2511 阅读 · 0 评论 -
LangChain入门:15.Sequential Chain:顺序链的使用
是LangChain库中的一个强大工具,它允许我们将多个按照特定的顺序连接起来,形成一个处理流程。这种链式结构使得我们可以将一个大任务分解为几个小任务,并依次执行,每个任务的输出成为下一个任务的输入。在这个示例中,我们将构建一个顺序链,目标是:导入所需的库和模块:创建第一个LLMChain:生成鲜花的知识性说明。创建第二个LLMChain:根据鲜花的知识性说明生成评论。创建第三个LLMChain:根据鲜花的介绍和评论撰写社交媒体文案。创建SequentialChain:将前面原创 2024-04-08 15:00:31 · 1305 阅读 · 0 评论 -
LangChain入门:14.LLMChain:最简单的链的使用
本文将介绍LangChain库中LLMChain工具的使用方法。LLMChain将提示模板、语言模型(LLM)和输出解析器整合在一起,形成一个连贯的处理链,简化了与语言模型的交互过程。我们将探讨LLMChain的技术特点、应用场景以及它解决的问题,并提供详细的代码示例。LLMChain是LangChain库中的一项功能强大的工具,它提供了一个便捷的方式来与语言模型进行交互。通过LLMChain,用户可以轻松地构建提示模板、调用语言模型进行推理,并解析输出结果,而无需手动处理繁琐的过程。原创 2024-04-08 14:31:44 · 2898 阅读 · 0 评论 -
LangChain入门:13.RetryWithErrorOutputParser解析器实战
解决的问题有:不完整的数据:原始的 bad_response 只提供了 action 字段而没有 action_input 字段。如果出错的不只是格式,比如,输出根本不完整,有缺失内容,那么仅仅根据输出和格式本身,是无法修复它的。这个解析器没有让我们失望,成功地还原了格式,甚至也根据传入的原始提示,还原了 action_input 字段的内容。由于 bad_response 只提供了 action 字段,而没有提供 action_input 字段,这与 Action 数据格式的预期不符,所以解析会失败。原创 2024-04-07 15:55:48 · 998 阅读 · 0 评论 -
LangChain入门:12.OutputFixingParser解析器实战
我们可以有效地解决数据解析过程中的格式错误问题,提高数据处理的自动化程度和准确性。通过本文提供的实战指南,读者可以轻松地应用这一强大工具,提升数据处理的效率和质量,从而更好地应对自动化数据解析的挑战。如果解析失败,它会将错误输出和格式化指令传递给大型语言模型(LLM),请求LLM进行修复。通过这种方式,我们可以自动修复格式错误,使数据解析过程更加顺畅。是一个强大的工具,它可以自动检测并修复常见的格式错误,使得数据解析过程更加顺畅。,我们可以提高数据处理的自动化程度和准确性,从而节省时间和精力。原创 2024-04-04 08:30:00 · 1411 阅读 · 1 评论 -
LangChain入门:11.Pydantic(JSON)解析器实战
使用Pydantic库定义我们期望的数据格式。这有助于确保模型的输出符合预期的结构。price: int。原创 2024-04-03 13:52:35 · 1601 阅读 · 0 评论 -
LangChain入门:9.使用FewShotPromptTemplate实现智能提示工程
在构建智能提示工程时,LangChain 提供了强大的 FewShotPromptTemplate 模型,它可以帮助我们更好地利用示例来指导大模型生成更加优质的提示。在这篇博文中,我们将使用 LangChain 的 FewShotPromptTemplate 模型来设计一个智能提示工程,以及如何有效地选择示例样本,从而实现高效且准确的提示生成。原创 2024-04-01 18:03:37 · 2099 阅读 · 4 评论 -
LangChain入门:6.HuggingFace API初体验
通过本文的介绍,我们了解了如何使用HuggingFace API来快速构建自然语言处理应用。从创建API密钥到实际的模型推理,HuggingFace API提供了一个简单而强大的平台,帮助开发者轻松地集成各种NLP模型和功能到他们的应用程序中。原创 2024-03-29 13:54:36 · 2850 阅读 · 0 评论 -
LangChain入门:5.使用图像字幕生成工具为图片增添主题描述
接下来,我们定义一个图像字幕生成工具类,用于处理图片并生成描述。这个工具类将在LangChain代理中被调用。# 定义图像字幕生成工具类description = "为图片添加主题内容."# 下载图像并转换为PIL对象# 使用预处理器处理图像# 使用模型生成图像字幕# 解码生成的字幕。原创 2024-03-28 16:46:12 · 1130 阅读 · 0 评论 -
LangChain入门:4.调用OpenAI的聊天机器人-提示模板
本次目的是编写一个简单的聊天机器人,该聊天机器人可以使用OpenAI的聊天机器人模型进行交互。在这个学习中,我们将创建了一个简单的聊天模板,用户可以输入任何文本,聊天机器人会根据预定义的提示消息模板生成回复,通过提示模板来指导聊天机器人的响应。提示模板用于将原始用户输入转换为更好的 LLM 输入。原创 2024-03-28 10:00:00 · 1061 阅读 · 0 评论 -
LangChain入门:3.调用OpenAI的聊天机器人-入门
在开始之前,确保您的开发环境已经安装了Python,并且您具备基本的Python编程知识。如果您对API还不够熟悉,可以先简要了解一下API是如何工作的,这将有助于您更好地理解本文所涉及的概念和操作。本文将深入介绍如何利用LangChain库快速集成OpenAI的聊天机器人功能,以实现智能化的应用和服务,为用户带来更加便捷、个性化的交互体验。根据需要,您可以进一步处理这些回复,例如,将其保存到数据库中或在用户界面上展示出来。例如,我们可以请求AI来帮助我们给书店取一个别致的名字,这是一个很常见的应用场景。原创 2024-03-27 16:53:43 · 5356 阅读 · 0 评论 -
LangChain入门:2.OpenAPI调用ChatGPT模型
通过本文的指导,您已经学会了如何使用OpenAPI调用ChatGPT模型,实现了一个能够与用户进行智能对话的系统。这不仅可以作为您学习LangChain的起点,也可以作为构建更复杂对话系统的基石。随着技术的不断进步,您可以尝试探索更多的模型和功能,以提供更加丰富和个性化的用户体验。通过LangChain库的实践,您将学习构建一个能够与用户进行自然语言对话的系统的关键步骤。在动手编码之前,请确保您已掌握Python编程的基础知识,并了解API调用的基本原理。为了与OpenAI的API进行交互,您需要安装。原创 2024-03-27 16:09:51 · 1863 阅读 · 0 评论 -
LangChain入门:1.安装Python
Python 是一种流行的编程语言,在 Windows 平台上安装 Python 是非常简单的。本文将向您展示如何在 Windows 系统上安装 Python。原创 2024-03-27 15:50:39 · 695 阅读 · 0 评论