There are n
children standing in a line. Each child is assigned a rating value given in the integer array ratings
.
You are giving candies to these children subjected to the following requirements:
- Each child must have at least one candy.
- Children with a higher rating get more candies than their neighbors.
Return the minimum number of candies you need to have to distribute the candies to the children.
Example 1:
Input: ratings = [1,0,2] Output: 5 Explanation: You can allocate to the first, second and third child with 2, 1, 2 candies respectively.
Example 2:
Input: ratings = [1,2,2] Output: 4 Explanation: You can allocate to the first, second and third child with 1, 2, 1 candies respectively. The third child gets 1 candy because it satisfies the above two conditions.
Constraints:
n == ratings.length
1 <= n <= 2 * 104
0 <= ratings[i] <= 2 * 104
思路:
创建数组l2r, 从左向右遍历ratings,如果ratings[i] > ratings[i-1], l2r[i] = l2r[i-1]+1 , 再创建r2l, 从右向左遍历ratings, 如果ratings[i] > ratings[i+1], r2l[i] = r2l[i+1]+1。现在l2r[i]为i-th元素以左侧邻居为基准的最小值, r2l[i]为i-th元素以i右侧邻居为基准的最小值,max(l2r[i], r2l[i])为同时满足两侧标准的最小值。
代码:
impl Solution {
pub fn candy(ratings: Vec<i32>) -> i32 {
let mut l2r = vec![1; ratings.len()];
for i in 1..ratings.len() {
if ratings[i] > ratings[i - 1] {
l2r[i] = l2r[i - 1] + 1;
}
}
let mut r2l = vec![1; ratings.len()];
for i in (0..ratings.len() - 1).rev() {
if ratings[i] > ratings[i + 1] {
r2l[i] = r2l[i + 1] + 1;
}
}
l2r.into_iter().zip(r2l).map(|(x, y)| x.max(y)).sum()
}
}