Pytorch批量数据读取方法详解: DataLoader

本文详细介绍了Pytorch中的DataLoader如何用于批量读取数据。通过实例展示了如何结合特征和标签创建数据生成器,并强调了在实际应用中,利用num_workers参数实现多进程数据读取以提升训练性能的重要性。

在训练模型的过程中,我们需要不断的读取小批量的数据样本。Pytorch提供了data包来读取数据。接下来我将人工生成一些数据,然后使用data包来处理数据。

import torch
import numpy as np
'''
The features number is 3, and the number of examples is 1000.
''' 
true_w = [2, 3, 5.3]
true_b = 9.7
features = torch.tensor(np.random.normal(0, 1, (1000, 3)), dtype=torch.float)
labels = true_w
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值