纯C语言如何使用卡尔曼滤波器对测量数据进行滤波。在函数kalman_init中,初始化卡尔曼滤波器结构体,其中包含过程噪声协方差Q,测量噪声协方差R,状态估计值x,和误差协方差p

文章展示了如何使用纯C语言编写卡尔曼滤波器,包括初始化滤波器结构体和执行滤波操作的函数。通过对模拟测量数据应用滤波器,得出滤波后的结果,并可进一步在Excel中分析生成折线图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

纯C语言如何使用卡尔曼滤波器对测量数据进行滤波。在函数kalman_init中,初始化卡尔曼滤波器结构体,其中包含过程噪声协方差Q,测量噪声协方差R,状态估计值x,和误差协方差p

#include <stdio.h>

// 定义卡尔曼滤波器结构体
typedef struct {
    float Q; // 过程噪声协方差
    float R; // 测量噪声协方差
    float x; // 状态估计值
    float p; // 误差协方差
    float k; // 卡尔曼增益
} KalmanFilter;

// 初始化卡尔曼滤波器
void kalman_init(KalmanFilter *kf, float Q, float R, float x, float p) {
    kf->Q = Q;
    kf->R = R;
    kf->x = x;
    kf->p = p;
}

// 卡尔曼滤波函数
float kalman_filter(KalmanFilter *kf, float z) {
    // 预测
    float x_pre = kf->x;
    float p_pre = kf->p + kf->Q;
    // 更新
    kf->k = p_pre / (p_pre + kf->R);
    kf->x = x_pre + kf->k * (z - x_pre);
    kf->p = (1 - kf->k) * p_pre;
    return kf->x;
}

int main() {
    // 初始化卡尔曼滤波器
    KalmanFilter kf;
    kalman_init(&kf, 0.01, 0.1, 0, 1);
    // 模拟测量数据
    float z[] = {1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0};
    // 使用卡尔曼滤波器进行滤波
    for (int i = 0; i < sizeof(z)/sizeof(float); i++) {
        float x = kalman_filter(&kf, z[i]);
        printf("%f\n", x);
    }
    return 0;
}

运行后输出效果如下:

 将数据导入至Excel后生成折线图如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪宁宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值