Spark Streaming反压机制

本文深入探讨Spark Streaming中的反压机制,旨在解决流处理系统处理速度慢于数据摄入速度的问题。介绍了反压机制的工作原理,包括如何通过RateController组件动态调整数据摄入速率,以及如何配置相关参数以优化性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

反压(Back Pressure)机制主要用来解决流处理系统中,处理速度比摄入速度慢的情况。是控制流处理中批次流量过载的有效手段。

反压机制原理

Spark Streaming中的反压机制是Spark 1.5.0推出的新特性,可以根据处理效率动态调整摄入速率。

当批处理时间(Batch Processing Time)大于批次间隔(Batch Interval,即 BatchDuration)时,说明处理数据的速度小于数据摄入的速度,持续时间过长或源头数据暴增,容易造成数据在内存中堆积,最终导致Executor OOM或任务奔溃。

在这种情况下,若是基于Receiver的数据源,可以通过设置spark.streaming.receiver.maxRate来控制最大输入速率;若是基于Direct的数据源(如Kafka Direct Stream),则可以通过设置spark.streaming.kafka.maxRatePerPartition来控制最大输入速率。当然,在事先经过压测,且流量高峰不会超过预期的情况下,设置这些参数一般没什么问题。但最大值,不代表是最优值,最好还能根据每个批次处理情况来动态预估下个批次最优速率。在Spark 1.5.0以上,就可通过背压机制来实现。开启反压机制,即设置spark.streaming.backpressure.enabledtrue,Spark Streaming会自动根据处理能力来调整输入速率,从而在流量高峰时仍能保证最大的吞吐和性能。

Spark Streaming的反压机制主要是通过RateController组件来实现。RateController继承自接口StreamingListener,并实现了onBatchCompleted方法。每一个Batch处理完成后都会调用此方法,具体如下:

 override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {
    val elements = batchCompleted.batchInfo.streamIdToInputInfo

    for {
      // 处理结束时间
      processingEnd <- batchCompleted.batchInfo.processingEndTime
      // 处理时间,即`processingEndTime` - `processingStartTime`
      workDelay <- batchCompleted.batchInfo.processingDelay
      // 在调度队列中的等待时间,即`processingStartTime` - `submissionTime`
      waitDelay <- batchCompleted.batchInfo.schedulingDelay
      // 当前批次处理的记录数
      elems <- elements.get(streamUID).map(_.numRecords)
    } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
  }

可以看到,接着又调用的是computeAndPublish方法,如下:

private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
    Future[Unit] {
      // 根据处理时间、调度时间、当前Batch记录数,预估新速率
      val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
      newRate.foreach { s =>
      // 设置新速率
        rateLimit.set(s.toLong)
      // 发布新速率
        publish(getLatestRate())
      }
    }

更深一层,具体调用的是rateEstimator.compute方法来预估新速率,如下:

def compute(
      time: Long,
      elements: Long,
      processingDelay: Long,
      schedulingDelay: Long): Option[Double]

该方法是接口RateEstimator中的方法,会计算出新的批次每秒应摄入的记录数。PIDRateEstimator,即PID速率估算器,是RateEstimator的唯一实现,具体估算逻辑可看PIDRateEstimator.compute方法,逻辑很复杂,用到了微积分相关的知识,总之,一句话,即根据当前Batch的结果和期望的差值来估算新的输入速率。

反压机制相关参数

  1. spark.streaming.backpressure.enabled

默认值false,是否启用反压机制。

  1. spark.streaming.backpressure.initialRate

默认值无,初始最大接收速率。只适用于Receiver Stream,不适用于Direct Stream

  1. spark.streaming.backpressure.rateEstimator

默认值pid,速率控制器,Spark 默认只支持此控制器,可自定义。

  1. spark.streaming.backpressure.pid.proportional

默认值1.0,只能为非负值。当前速率与最后一批速率之间的差值对总控制信号贡献的权重。用默认值即可。

  1. spark.streaming.backpressure.pid.integral

默认值0.2,只能为非负值。比例误差累积对总控制信号贡献的权重。用默认值即可。

  1. spark.streaming.backpressure.pid.derived

默认值0.0,只能为非负值。比例误差变化对总控制信号贡献的权重。用默认值即可。

  1. spark.streaming.backpressure.pid.minRate

默认值100,只能为正数,最小速率。

反压机制的使用

启用反压

//启用反压
conf.set("spark.streaming.backpressure.enabled","true")
//最小摄入条数控制
conf.set("spark.streaming.backpressure.pid.minRate","1")
//最大摄入条数控制
conf.set("spark.streaming.kafka.maxRatePerPartition","12")

注意:

A. 反压机制真正起作用时需要至少处理一个批

由于反压机制需要根据当前批的速率,预估新批的速率,所以反压机制真正起作用前,应至少保证处理一个批。

B. 如何保证反压机制真正起作用前应用不会崩溃

要保证反压机制真正起作用前应用不会崩溃,需要控制每个批次最大摄入速率。若为Direct Stream,如Kafka Direct Stream,则可以通过spark.streaming.kafka.maxRatePerPartition参数来控制。此参数代表了 每秒每个分区最大摄入的数据条数。假设BatchDuration为10秒,spark.streaming.kafka.maxRatePerPartition为12条,kafka topic 分区数为3个,则一个批(Batch)最大读取的数据条数为360条(3*12*10=360)。同时,需要注意,该参数也代表了整个应用生命周期中的最大速率,即使是背压调整的最大值也不会超过该参数。

查看日志

创建速率控制器
INFO PIDRateEstimator: Created PIDRateEstimator with proportional = 1.0, integral = 0.2, derivative = 0.0, min rate = 1.0
计算当前批次速率
// records 记录数(对应WebUI: Input Size)
// processing time 处理时间,毫秒(对应WebUI: Processing Time)
// scheduling delay 调度时间,毫秒(对应WebUI: Scheduling Delay)
TRACE PIDRateEstimator: 
time = 1558888897224, # records = 33, processing time = 24548, scheduling delay = 8
预估新批次速率
TRACE PIDRateEstimator: 
 latestRate = -1.0, error = -2.344305035033404
 latestError = -1.0, historicalError = 0.0010754440280267231
 delaySinceUpdate = 1.558888897225E9, dError = -8.623482003280801E-10
第一次计算跳过速率估计
TRACE PIDRateEstimator: First run, rate estimation skipped
当前批次没有记录或没有延迟则跳过速率估计
TRACE PIDRateEstimator: Rate estimation skipped
以新的预估速率运行
TRACE PIDRateEstimator: New rate = 1.0

查看WebUI

spark_streaming_back_pressure.png

可以看到,开启反压后,摄入速率Input Rate可以根据处理时间Processing Time来调整,从而保证应用的稳定性。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值