PyTorch GPU版本离线安装

本文档详细介绍了CUDA和cuDNN的安装步骤,包括从查看显卡信息、选择和下载CUDA版本、安装CUDA以及验证安装成功。接着,介绍了cuDNN的下载和文件放置路径,以及配置环境变量的过程。最后,提供了PyTorch的下载链接,并指导如何测试安装是否成功。

1.查看显卡信息

(1)打开Nvidia控制面板,查看显卡信息

2.cuda安装

2.1 选择cuda版本

根据显卡信息查询要下载的cuda版本,https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

2.2 下载cuda

1.打开cuda官网:https://developer.nvidia.com/cuda-toolkit-archive

2.下载cuda

3.cuda安装

 (1)双击离线安装包,进入安装界面。

 (2)选择自定义安装

按默认选项,点击下一步,安装完成。

cuda的环境变量会自动进行配置。

(3)查看是否安装成功

打开cmd窗口,输入nvcc -V,查看cuda版本信息,安装成功。

 

 3.cuDNN安装

cuda安装完成后,需要下载对应的cuDNN。

下载对应版本的cudnn链接:https://developer.nvidia.com/rdp/cudnn-archive

 需要填写登录信息

 下载完成后

分别将cuda/include、cuda/lib、cuda/bin三个目录中的内容拷贝到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1对应的include、lib、bin目录下。

注意:不是替换文件夹,二是将文件放入对应的文件夹中。

配置环境变量

此电脑--->高级系统设置--->环境变量--->系统变量--->path--->编辑--->新建

添加环境变量C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\lib\x64

4.PyTorch安装

https://download.pytorch.org/whl/torch_stable.html

下载对应的pytorch版本

pytorch官网查看pytorch和torchvision的关系。

 下载torchvision

 5.测试PyTorch安装成功

 

### 离线安装 PyTorch GPU 版本的方法 为了成功离线安装 PyTorchGPU 版本,需要按照以下流程操作: #### 1. 准备环境 确保目标机器上已经安装了 NVIDIA 显卡驱动程序以及 CUDA 和 cuDNN 库。这些库的版本需与所选 PyTorch 版本兼容[^3]。 #### 2. 下载所需依赖项 访问官方 PyTorch 轮子文件仓库 `https://download.pytorch.org/whl/torch_stable.html` 并滚动页面到底部以找到支持 GPU 的轮子文件列表。 根据系统的 Python 版本、CUDA 版本以及其他硬件需求选择合适的 `.whl` 文件进行下载。例如: - 对于 Python 3.9 和 CUDA 11.6,可选择如下链接中的文件之一: ``` https://download.pytorch.org/whl/cu116/torch-1.12.0%2Bcu116-cp39-cp39-linux_x86_64.whl ``` 如果下载速度过慢,建议通过迅雷或其他工具加速下载过程[^5]。 #### 3. 将文件传输至目标设备 将已下载的 `.whl` 文件复制到目标 Ubuntu 设备上的指定路径(如 `/home/user/offline_packages/`),可以通过 USB 或 SCP 工具实现数据转移。 #### 4. 创建 Conda 环境并激活 在目标设备上运行以下命令来创建一个新的虚拟环境,并将其激活: ```bash conda create -n myenv python=3.9 conda activate myenv ``` 这里假设选择了 Python 3.9 版本作为基础解释器,请依据实际情况调整此参数。 #### 5. 使用 Pip 进行离线安装 切换到存储 `.whl` 文件的位置并通过 pip 命令执行安装动作: ```bash cd /home/user/offline_packages/ pip install torch-*.whl torchvision-*.whl torchaudio-*.whl ``` 上述指令会自动解析并加载所有必要的组件及其关联依赖关系。 #### 6. 验证安装结果 最后一步是在终端中启动交互式 Python 解释器测试是否能够正常导入模块: ```python import torch print(torch.cuda.is_available()) ``` 当返回值为 True,则表明 GPU 支持已被正确启用。 --- ### 注意事项 - **版本匹配**:务必确认使用的 PyTorch、CUDA 和 cuDNN 各自之间的版本相互兼容。 - **网络连接状态**:即使处于完全断网状态下也能顺利完成整个过程,前提是提前准备好全部必需品。 - **错误排查**:遇到任何异常情况时优先查阅日志信息定位具体原因;必要情况下重新核验各环节设置无误后再试一次。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值