基于大模型的智能文本提取库:langextract

Hello大家好!我是助你打破信息差的开发者导航。今天给大家分享的开源项目是langextract,一个基于大模型的智能文本提取库!

在处理大量非结构化文本时,如临床笔记、报告等,从中提取结构化信息往往耗费大量时间和精力,且难以保证准确性和一致性。而 google/langextract 的出现解决了这一难题,作为由 Google 开源的 Python 库,用户可通过google/langextract获取,只需提供简短提示和少量示例,就能借助大型语言模型从非结构化文本中高效、精准地提取结构化信息。

google/langextract 是什么?

google/langextract 是一款由 Google 开源的基于大模型的智能文本提取 Python 库。它能利用大型语言模型(如 Gemini),根据用户定义的指令从非结构化文本文档中提取结构化信息,具备源文本精确定位和交互式可视化功能,具体详情可参考项目官网。

核心功能

google/langextract 的核心价值在于其高效、精准的非结构化文本提取能力,适合需要处理各类文本文档、从中提取关键信息的开发者、研究人员以及相关行业从业者。

  • 精准源文本定位 —— 将每一处提取结果映射到源文本中的精确位置,支持可视化高亮,便于追溯和验证。
  • 可靠的结构化输出 —— 基于用户提供的少量示例,借助支持的模型(如 Gemini)的受控生成能力,确保输出符合一致的 schema。
  • 长文档优化处理 —— 通过文本分块、并行处理和多轮提取等优化策略,解决长文档提取的难题,提高召回率。
  • 交互式可视化 —— 能生成独立的交互式 HTML 文件,可在原始语境中可视化和查看数千个提取的实体。
  • 灵活的模型支持 —— 支持多种模型,包括 Google Gemini 系列等云托管大模型,以及通过内置 Ollama 接口接入的本地开源模型。
  • 多领域适应性 —— 只需几个示例就能定义任何领域的提取任务,无需模型微调即可适应不同需求。

使用场景

不同的用户在多种场景下,都能借助 google/langextract 高效提取文本中的结构化信息。

人群 / 角色

场景描述

关键步骤要点

推荐指数

医疗从业者

从病历、诊断报告中提取患者信息、用药情况等

定义提取任务和示例,输入医疗文本,运行提取功能,查看可视化结果并验证

★★★★★

文学研究者

从文学作品中提取人物、情感、关系等元素

设定提取规则和示例,输入文学文本,生成提取结果,利用可视化分析作品

★★★★⯨

数据分析师

从大量非结构化报告中提取关键数据进行分析

配置提取参数,批量处理文本,将提取的结构化数据用于后续分析工作

★★★★

软件开发人员

将文本提取功能集成到自己的应用程序中

调用该库的 API,根据应用需求设置提取逻辑,处理提取结果并集成到应用

★★★★

操作指南

google/langextract 的使用流程清晰,开发者通过简单步骤即可完成文本提取操作。

  1. 安装库:可通过 PyPI 安装,命令为pip install langextract,也可从源码安装;
  1. 定义提取任务:创建提示以清晰描述提取内容,并提供高质量示例;
  1. 设置 API 密钥(使用云模型时):可通过环境变量、.env 文件或直接在代码中设置(不推荐生产环境);
  1. 运行提取:调用lx.extract函数,传入输入文本、提示描述、示例和模型 ID 等参数;
  1. 保存和可视化结果:将结果保存为 JSONL 文件,再生成交互式 HTML 可视化文件查看提取的实体;
  1. 根据需要调整参数,如提取轮次、并行处理的工作线程数等。(注意:使用云模型需确保 API 密钥有效,处理长文档可适当调整分块等参数)

支持平台

google/langextract 是 Python 库,支持在能运行 Python 的各类平台上使用,包括 Windows、macOS、Linux 等操作系统。它可与云托管大模型(如 Google Gemini 系列)和本地模型(通过 Ollama)配合使用,具体的环境要求可参考项目文档。

产品定价

google/langextract 是开源项目,用户可免费获取、安装和使用该库。使用云托管大模型时,可能会产生相应的 API 调用费用,具体费用取决于所使用的模型和服务提供商。

常见问题

Q:google/langextract 支持哪些模型?

A:支持多种模型,包括 Google Gemini 系列等云托管大模型,以及通过 Ollama 接口接入的本地开源模型,还可添加自定义模型提供商。

Q:使用 google/langextract 需要编程基础吗?

A:是的,该库是 Python 库,需要一定的 Python 编程基础才能正确使用其 API 进行文本提取操作。

Q:如何处理长文档的提取?

A:该库针对长文档提取进行了优化,可通过设置提取轮次、并行处理的工作线程数、调整上下文大小等参数来提高提取效果和效率。

开发者小结

google/langextract 的优势在于其能高效、精准地从非结构化文本中提取结构化信息,且具备源文本定位和可视化功能,支持多种模型和多领域场景。它适合医疗、文学、数据分析等领域需要处理文本提取的用户以及软件开发人员。但对于没有 Python 编程基础的用户来说,可能需要先学习相关知识才能更好地使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开发者导航

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值