
机器学习/深度学习
文章平均质量分 84
WangYan2022
越努力越幸运!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MATLAB近红外光谱分析:MATLAB编程+BP神经网络+SVM+随机森林+遗传算法+变量降维+卷积神经网络等
系统介绍MATLAB编程基础与六大机器学习算法(BP神经网络、支持向量机、决策树与随机森林、遗传算法、变量降维、卷积神经网络)在近红外光谱分析中的应用,并深入探讨SCI级科研绘图技巧,帮助研究者从数据预处理、特征提取、模型构建到结果可视化,全面提升研究效率与论文质量。原创 2025-07-23 10:23:00 · 337 阅读 · 0 评论 -
现代R语言机器学习:Tidymodel/Tidyverse语法+回归/树模型/集成学习/SVM/深度学习/降维/聚类分类与科研绘图可视化
以 现代R语言 为核心,系统性地介绍机器学习的核心方法与实践技巧,涵盖 回归分析、树模型、集成学习、支持向量机、深度学习、降维技术、聚类与分类 七大专题,并结合 科研绘图与数据可视化,帮助读者从理论到实践全面掌握机器学习在科研中的应用。原创 2025-07-15 09:29:47 · 152 阅读 · 0 评论 -
Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
采用“理论讲解 + 案例实战 + 动手实操 + 互动讨论”四位一体的模式,不仅重视知识,更注重技能落地与解决实际问题的能力培养。系统掌握从大语言模型到深度学习模型的全链路技术路径,提升科研创新力与工程实战力,在高水平项目攻坚和论文产出中实现突破。无论您是科研人员、工程师,还是希望拥抱AI未来的技术从业者,都将为您提供一场高价值、高密度的体验,助您在智能时代实现技术跃升与职业进阶。原创 2025-07-03 14:12:05 · 874 阅读 · 0 评论 -
MATLAB 2024b深度学习工具箱新特性全面解析与DeepSeek大模型集成开发:卷积神经网络、迁移学习算法、时间卷积网络、生成式对抗网络、自编码器、目标检测YOLO模型、语义分割、注意力机制等
核心技术突破体现在四个方面:首先,物理信息神经网络(PINN)模块实现微分方程约束与深度学习框架的耦合建模,为科学计算开辟新范式;其次,深度网络设计器新增模型剪枝与量化工具链,结合FPGA部署方案大幅提升边缘计算效率;再次,Transformer技术专题纵向解析BERT/GPT/ViT架构演变,横向打通NLP与CV领域迁移应用;最后,大语言模型本地部署接口支持Ollama与DeepSeek的无缝集成,构建智能对话系统开发闭环。原创 2025-03-17 12:16:52 · 1503 阅读 · 0 评论 -
如何利用R语言进行Meta分析:R-Meta多手段全流程分析与Meta高级绘图、多层次分层嵌套模型构建与Meta回归诊断、贝叶斯网络、MCMC参数优化及不确定性分析、Meta数据缺失值处理方法等
通过AI大模型全程助力Meta分析,从文献计量分析研究热点变化,寻找科学问题、R-Meta多手段全流程分析与Meta高级绘图、多层次分层嵌套模型构建与Meta回归诊断、贝叶斯网络、MCMC参数优化及不确定性分析、Meta数据缺失值处理的六种方法与结果可靠性分析、Meta加权机器学习与非线性Meta分析等方面讲解原创 2024-10-15 12:50:22 · 1295 阅读 · 0 评论 -
ChatGPT+Python近红外光谱数据分析及机器学习与深度学习建模进阶应用
熟练地掌握ChatGPT4.0在近红外光谱数据分析、定性/定量分析模型代码自动生成等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、自编码器、U-Net等)的基本原理及Python、Pytorch代码实现方法。原创 2024-01-10 17:03:12 · 1437 阅读 · 0 评论 -
多元线性回归,BP神经网络,支持向量机,决策树、随机森林、Adaboost、XGBoost和LightGBM,遗传算法,变量降维与特征选择算法,卷积神经网络,迁移学习,自编码器等在近红外光谱应用
郁老师课程更容易让交叉学科的人员听的懂、学的会,成为众多课题组人员培养的优选课程,建有导师群,长期的进行辅助学习交流,深受大家好评,如果您正要学习编程、机器学习、人工智能等技能,欢迎咨询!原创 2023-10-09 13:10:02 · 685 阅读 · 1 评论 -
全面助力AI人工智能在科研、教学与实践技能
在人工智能领域进行研究和深耕,将帮助您在茫茫职场的竞争人海中脱颖而出,登上未来科技巨变的最前沿,比他人更加敏锐、更加迅捷地抓住未来的动向原创 2023-07-21 12:43:19 · 323 阅读 · 0 评论 -
最新基于MATLAB 2023a的机器学习、深度学习应用
MATLAB 2023版的深度学习工具箱,提供了完整的工具链,使您能够在一个集成的环境中进行深度学习的建模、训练和部署。与Python相比,MATLAB的语法简洁、易于上手,无需繁琐的配置和安装,让您能够更快地实现深度学习的任务。原创 2023-06-20 12:11:33 · 1114 阅读 · 0 评论 -
机器学习在生态、环境经济学中的应用及论文写作
从论文写作的实际需求出发,首先简单的介绍经济学的基本理论与研究方法,让您了解论文的选题方法与写作框架。随后重点从数据的收集与清洗、综合建模评价、数据的分析与可视化、数据的空间效应、因果推断等方面入手,让您用最快的速度掌握利用R语言进行经济学研究的技术。同时也会对论文写作中经常用到的辅助软件进行介绍,尽量降低论文写作的难度。原创 2023-05-04 13:58:52 · 713 阅读 · 0 评论 -
PyTorch机器学习与深度学习技术方法与案例应用
更加系统地学习深度学习的基础理论知识及对应的Pytorch代码实现方法,掌握深度学习的基础知识,与经典机器学习算法的区别与联系,以及最新的迁移学习、循环神经网络、长短时记忆神经网络、时间卷积网络、对抗生成网络、Yolo目标检测算法、自编码器等算法的原理及其Pytorch编程实现方法。原创 2023-03-20 12:40:27 · 944 阅读 · 0 评论 -
如何利用python机器学习解决空间模拟与时间预测问题及经典案例分析
了解机器学习的发展历史、计算原理、基本定义,熟悉机器学习方法的分类,常用机器学习方法,以及模型的评估与选择;熟悉数据预处理的流程,掌握python程序包的使用;理解机器学习在生态水文中的应用,掌握机器学习模型构建方法,学会构建机器学习模型用于地表参数的空间模拟与时间预测,并掌握生态水文过程分析。原创 2023-02-03 10:45:47 · 777 阅读 · 0 评论 -
基于python多光谱遥感数据处理、图像分类、定量评估及机器学习方法应用
通过对光谱、图像等数据处理,掌握岩矿、土壤、植被等地物的光谱特征和图像特征,结合ENVI等专业软件、Python开发工具平台,开展多光谱数据预处理、图像分类、定量评估、机器学习等方法的实践和开发,提高运用多光谱遥感技术解决实际问题能力。原创 2022-12-27 11:37:04 · 7029 阅读 · 5 评论 -
基于Python多元线性回归、机器学习、深度学习在近红外光谱分析中的实践应用
理论讲解+案例实战+动手实操+讨论互动原创 2022-12-19 10:45:49 · 732 阅读 · 0 评论 -
基于Python机器学习及深度学习在空间模拟与时间预测应用
了解机器学习的发展历史、计算原理、基本定义,熟悉机器学习方法的分类,常用机器学习方法,以及模型的评估与选择;熟悉数据预处理的流程,掌握python程序包的使用;理解机器学习在生态水文中的应用,掌握机器学习模型构建方法,学会构建机器学习模型用于地表参数的空间模拟与时间预测,并掌握生态水文过程分析。原创 2022-11-24 14:09:48 · 775 阅读 · 0 评论 -
基于MATLAB、Python科研数据可视化
互联网的飞速发展伴随着海量信息的产生,而海量信息的背后对应的则是海量数据。如何从这些海量数据中获取有价值的信息来供人们学习和工作使用,这就不得不用到大数据挖掘和分析技术。数据可视化分析作为大数据技术的核心一环,其重要性不言而喻。原创 2022-09-26 15:21:37 · 26042 阅读 · 6 评论 -
基于R语言、MATLAB、Python机器学习方法与案例分析
机器学习已经成为继理论、实验和数值计算之后的科研“第四范式”,是发现新规律,总结和分析实验结果的利器。原创 2022-09-02 11:16:51 · 3873 阅读 · 1 评论 -
基于MATLAB 2021b的机器学习、深度学习
采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出分析图像处理、机器学习和深度学习在应用时需要掌握的经验及编程技巧。原创 2022-07-13 09:09:09 · 1757 阅读 · 0 评论