健康保险行业AI综合解决方案与思路探讨
健康保险行业AI综合解决方案与思路探讨
敏捷开发流程与方法,为什么要敏捷,以及敏捷开发的误区
敏捷开发流程与方法,为什么要敏捷,以及敏捷开发的误区
医疗知识库与商业健康保险的结合简介与实现
医疗知识库与商业健康保险的结合简介与实现:
1.贴合健康保险业务场景的知识图谱库
2.如何进行数据治理,AI处理+人工审核
3.构建医疗知识图谱体系,定制化产品需求输出
保险公司对接医疗平台拉取推送健康保险就诊类数据接口样例
保险公司对接医疗平台拉取、推送健康保险相关的就诊类数据接口样例。
一般主要包括和医院的药品,就诊信息,检验检测,费用等的数据交换接口。
TensorFlow LSTM 写诗代码与数据
TensorFlow LSTM 写诗代码与数据
用AI 算法起中文名字工程
起名就像命令变量一样,见名知意。写程序命名有驼峰,蛇形。中国人起名字也有规则:《三才五格姓名学》,一般人姓,名,加起来不过3-4 个字,古时候还有个号。现在人没到出人头地的境界,是没有称谓的。 可见姓名这个短文本承载了,短期内父母对子女的期许,需要有点含义才能对得起将来子女的的询问。
古人云:赐子千金,不如赐子一艺!赐子一艺,不如赐子一名!
具体请参考博文:https://season.blog.csdn.net/article/details/122551886
中英文反向词典封装后端工程
普通的词典告诉你某个词语的定义,而反向词典恰好相反,可以告诉你哪些词语符合你输入描述的意思。下图为万词王在线反向词典的页面截图,其中演示了反向查词的一个示例,输入“山非常高”,系统将返回一系列模型认为表达“山非常高”意思的词语,例如“高峻”、“巍峨”等。
具体参考博文:https://season.blog.csdn.net/article/details/122421918
自然语言处理峰会PPT公开版.zip
自然语言处理峰会2021PPT, 课程可参考:https://blog.csdn.net/wangyaninglm/category_9588229.html
大数据聚类算法与kmeans 算法综述
大数据聚类算法与处理与kmeans 算法综述
pyspark-xgboost.zip
使用方式参见:
https://season.blog.csdn.net/article/details/118196915
windows11 下使用清华大学MixPoet 项目训练的AI 写诗模型与代码
windows11 下使用清华大学MixPoet 项目训练的AI 写诗模型与代码,效果SOAT。具体参见博文:https://season.blog.csdn.net/article/details/122196639
人工智能医疗器械数据集的构建标准.zip
CFDAB-T0501-2014_Specifications_for_database_design_of_food_and_drug_administration.pdf
LIMS针对检测实验室检测可溯源性的应用与研究.pdf
'TCT 扫描切片 属性维度.mm'
大数据环境下数据对象的可溯源性保障方法研究.pdf
'附件3_《人工智能医疗器械质量要求和评价 第2部分:数据集通用要求》征求意见稿.pdf'
'附件4_《人工智能医疗器械质量要求和评价 第2部分:数据集通用要求》编制说明.pdf'
宫颈癌标准诊断简介.docx
宫颈癌智能阅片产品MI.docx
宫颈细胞学.ppt
基于医疗健康大数据的安全起源模型与可信性验证算法.pdf
人工智能医疗器械用数据集管理与评价方法研究.pdf
深度学习辅助决策医疗器械软件审评要点.doc
数据集参考总结.pptx
数据集在人工智能医疗器械质控中的角色与要求.pdf
调研-数据集及数据标准.pdf
医疗器械的数据完整性.pdf
医疗器械软件技术审查指导原则(第二版征求意见稿).docx
医疗器械软件注册技术审查指导原则.docx
医疗器械生产质量管理规范附录.doc
医学数字影像通信基本数据集.pdf
医学图像来源与篡改检测算法研究.caj
医学影像信息系统中图像数据的管理及安全策略.pdf
以图搜图.png
NERuselocal.zip
电子病历命名实体识别代码,说明详见文章:https://season.blog.csdn.net/article/details/115283564
基于Django构建在线文本分类预测系统代码、模型、数据集:SVM模型在线预测与部署 基于 Django 3.2 框架
基于Django构建在线文本分类预测系统代码、模型、数据集:SVM模型在线预测与部署 基于 Django 3.2 框架,参考博客:https://blog.csdn.net/wangyaninglm/article/details/116334297
基于大数据的医疗健康保险业务业务推进思路
基于大数据的医疗健康保险业务业务推进思路
计算机、软件工程相关专业毕业、职业生涯规划、考研、笔试、机试、简历写作资料总结
计算机、软件工程相关专业毕业、职业生涯规划、考研、笔试、机试资料总结,简历写作资料总结。
详见博客:
https://season.blog.csdn.net/article/details/118465635
Desktop.zip
django 学习目录,本人小项目源码,方便学习
LearningSparkV2-master (00).zip 代码及数据集
LearningSparkV2-master 代码及数据集,详见博客:https://season.blog.csdn.net/article/details/115561697
体检机构数据接入接口设计(push).xlsx
体检机构接入数据接口设计,详见博客:https://season.blog.csdn.net/article/details/115273700
What's next for AI agentic workflows ft. Andrew Ng of AI Fund
What's next for AI agentic workflows ft. Andrew Ng of AI Fund
CES2024-李飞飞,吴恩达AI 冬天不会再来了-2
CES2024-李飞飞,吴恩达AI 冬天不会再来了-2
CES2024-李飞飞,吴恩达AI 冬天不会再来了-1
CES2024-李飞飞,吴恩达AI 冬天不会再来了-1
YOLOv8的手机摄像头的自动检测数据集
YOLOv8的手机摄像头的自动检测数据集,由此数据集训练的目标检测模型准确率约为90%左右,所有数据均为人工标注,标注准确率100%
走路玩手机,打电话,图片分类数据集约4500张图片,3个类别
走路玩手机,打电话,图片数据集约4500张图片,3个类别,可用于目标检测,跟踪,图片分类,行为检测等,基于网络收集,开源数据集,AIGC 等手段二次加工,具体介绍见博客:https://season.blog.csdn.net/article/details/129052627
走路打电话,视频数据集1
走路打电话,视频数据集1
走路打电话,视频数据集2
走路打电话,视频数据集2
正常走路,走路玩手机,打电话,图片数据集15000张,3个类别,全部经过人工判别,基于此数据集分类准确度90%+,可信度100%
正常走路,走路玩手机,打电话,图片数据集约15000张图片,3个类别,全部经过人工判别,,基于此数据集分类准确度90%+,可信度100%。可以直接进行产业级别的应用部署,二次开发等,可用于目标检测,跟踪,图片分类,行为检测等,基于网络收集,开源数据集,AIGC 等手段二次加工,博主纯人工完成,具体介绍见博客:https://season.blog.csdn.net/article/details/129052627
基于Django YOLOv5搭建实时多摄像头监控系统
基于Django YOLOv5搭建实时多摄像头监控系统,详细内容可参考本人博客:https://blog.csdn.net/wangyaninglm/article/details/127619678
电子行业AIGC发展给电子带来的投资机遇:AI服务器拆解,产业链核心受益梳理
电子行业AIGC发展给电子带来的投资机遇:AI服务器拆解,产业链核心受益梳理
基于Django YOLOv8搭建实时跟踪与统计系统.pptx
基于Django YOLOv8搭建实时跟踪与统计系统, 详细内容见本人博客:https://blog.csdn.net/wangyaninglm/article/details/129986384
深度学习与视频分析简介.pptx
深度学习与视频分析简介,详细内容参考本人博客:https://blog.csdn.net/wangyaninglm/article/details/128577348
AIGC研究与应用1-简介.pptx
AIGC 《我,机器人》中有经典的一幕,主角曾与机器人展开了激烈的辩论,面对“机器人能写出交响乐吗?”“机器人能把画布变成美丽的艺术品吗?”等一连串提问,机器人只能讥讽一句:“难道你会?”这也让创造力成为区分人类与机器最本质的标准之一。
AIGC研究与应用1-简介
AIGC 《我,机器人》中有经典的一幕,主角曾与机器人展开了激烈的辩论,面对“机器人能写出交响乐吗?”“机器人能把画布变成美丽的艺术品吗?”等一连串提问,机器人只能讥讽一句:“难道你会?”这也让创造力成为区分人类与机器最本质的标准之一。
智能聊天机器人技术研究与应用.pdf
智能聊天机器人技术研究与应用,包括以下一些内容:
1.聊天机器人简介
2.预训练模型与聊天机器人研究进展
3.知识图谱与智能问答
4.智能聊天机器人应用实践
5.总结与展望
参考博文:https://blog.csdn.net/wangyaninglm/article/details/128196397
cuda tenorrt8.4 for 11.6
cuda tenorrt8.4 for 11.6
基于知识图谱的问答机器人【医疗领域】
基于知识图谱的问答机器人【医疗领域】,详细介绍请见:
https://season.blog.csdn.net/article/details/125986130