并行计算中MPI相关技术的创新与性能提升
在当今的科学计算和高性能计算领域,随着计算规模的不断扩大,如朝着百亿亿次计算迈进,系统需要处理海量的数据和复杂的计算任务。MPI(Message Passing Interface)作为一种广泛使用的并行编程模型,在分布式系统中发挥着重要作用。然而,传统的MPI实现面临着一些挑战,如在共享内存环境下的性能瓶颈、通信与计算的重叠问题以及可扩展性等。本文将介绍几种创新的MPI相关技术,包括HC - MPI、AzequiaMPI、MPI - DB以及可扩展的MPI运行时算法,这些技术旨在解决上述挑战,提升MPI的性能和可扩展性。
1. HC - MPI:集成异步任务并行性与MPI通信
随着计算规模的不断扩大,未来的极端规模系统面临着混合并行性的挑战。HC - MPI通过在Habanero - C(HC)研究语言中集成节点内异步任务并行性和节点间MPI通信,提出了一种新的编程模型。
HC - MPI程序在节点内遵循任务并行模型,在节点间遵循MPI的单程序多数据(SPMD)模型。HC语言从X10编程语言中借鉴了 async
和 finish
两个构造,用于异步任务并行编程。为了扩展HC以支持分布式系统,提供了两种类似于MPI的消息传递操作:异步消息传递(async MP)和同步消息传递(sync MP)。
- 异步消息传递(async MP) :使用异步任务传递消息,不会阻塞当前执行流程。
finish
语句作为同步范围,确保所有异步操作(任务和消息传递)在进入finish <