题目## 题目
解题思路
-
问题分析:
- 每3个空瓶可以换1瓶汽水
- 喝完后又会产生新的空瓶
- 2个空瓶时可以借1个空瓶换1瓶汽水
- 1个空瓶时无法继续换取
-
处理流程:
初始状态:10个空瓶 第1轮:10/3=3瓶汽水,剩余1个空瓶,新增3个空瓶,共4个空瓶 第2轮:4/3=1瓶汽水,剩余1个空瓶,新增1个空瓶,共2个空瓶 第3轮:2个空瓶,借1个换1瓶汽水 总计:3+1+1=5瓶汽水
-
关键点:
- 每轮循环处理3个空瓶换1瓶的情况
- 每轮更新剩余空瓶数 = 换不了的空瓶 + 新喝完的空瓶
- 最后特殊处理2个空瓶的情况
代码
#include <iostream>
using namespace std;
int getDrinks(int bottles) {
if (bottles < 2) {
return 0;
}
// 每3个空瓶换1瓶汽水
int total = 0;
while (bottles >= 3) {
// 当前可以换到的汽水数
int newDrinks = bottles / 3;
total += newDrinks;
// 剩余的空瓶 = 换不了的空瓶 + 新喝完的空瓶
bottles = bottles % 3 + newDrinks;
}
// 如果最后剩2个空瓶,还可以找老板借1个空瓶换1瓶汽水
if (bottles == 2) {
total += 1;
}
return total;
}
int main() {
int n;
while (cin >> n && n) {
cout << getDrinks(n) << endl;
}
return 0;
}
import java.util.Scanner;
public class Main {
public static int getDrinks(int bottles) {
if (bottles < 2) {
return 0;
}
// 每3个空瓶换1瓶汽水
int total = 0;
while (bottles >= 3) {
// 当前可以换到的汽水数
int newDrinks = bottles / 3;
total += newDrinks;
// 剩余的空瓶 = 换不了的空瓶 + 新喝完的空瓶
bottles = bottles % 3 + newDrinks;
}
// 如果最后剩2个空瓶,还可以找老板借1个空瓶换1瓶汽水
if (bottles == 2) {
total += 1;
}
return total;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {
int n = sc.nextInt();
if (n == 0) {
break;
}
System.out.println(getDrinks(n));
}
sc.close();
}
}
def get_drinks(bottles):
if bottles < 2:
return 0
# 每3个空瓶换1瓶汽水
total = 0
while bottles >= 3:
# 当前可以换到的汽水数
new_drinks = bottles // 3
total += new_drinks
# 剩余的空瓶 = 换不了的空瓶 + 新喝完的空瓶
bottles = bottles % 3 + new_drinks
# 如果最后剩2个空瓶,还可以找老板借1个空瓶换1瓶汽水
if bottles == 2:
total += 1
return total
def main():
while True:
try:
n = int(input())
if n == 0:
break
print(get_drinks(n))
except EOFError:
break
if __name__ == "__main__":
main()
算法及复杂度
-
算法:贪心算法
- 每次尽可能多地用3个空瓶换汽水
- 最后处理特殊情况(2个空瓶)
-
时间复杂度: O ( log n ) \mathcal{O}(\log n) O(logn)
- 每次循环瓶子数量至少减少为原来的1/3
- 假设初始n个瓶子,经过k轮后: n ∗ ( 1 / 3 ) k < 3 n * (1/3)^k < 3 n∗(1/3)k<3
- 解得: k < log 3 ( n / 3 ) k < \log_3(n/3) k<log3(n/3)
- 因此时间复杂度为 O ( log n ) \mathcal{O}(\log n) O(logn)
-
空间复杂度: O ( 1 ) \mathcal{O}(1) O(1)
- 只需要常数级别的变量存储
- 不需要额外的数据结构
解题思路
这是一个求最小公倍数的问题。最小公倍数可以通过两个数的乘积除以它们的最大公约数得到。
关键点
- 数据范围: 1 ≤ a , b ≤ 100000 1 \leq a,b \leq 100000 1≤a,b≤100000
- 需要先求最大公约数(GCD)
- 最小公倍数 = a × b G C D ( a , b ) \frac{a \times b}{GCD(a,b)} GCD(a,b)a×b
代码
#include <iostream>
using namespace std;
// 求最大公约数 - 使用辗转相除法
int getGCD(int a, int b) {
while (b != 0) {
int temp = b;
b = a % b;
a = temp;
}
return a;
}
// 求最小公倍数
int getLCM(int a, int b) {
int gcd = getGCD(a, b);
return (long long)a * b / gcd; // 注意防止溢出
}
int main() {
int a, b;
while (cin >> a >> b) {
cout << getLCM(a, b) << endl;
}
return 0;
}
import java.util.Scanner;
public class Main {
// 求最大公约数 - 使用辗转相除法
public static int getGCD(int a, int b) {
while (b != 0) {
int temp = b;
b = a % b;
a = temp;
}
return a;
}
// 求最小公倍数
public static int getLCM(int a, int b) {
int gcd = getGCD(a, b);
return (int)((long)a * b / gcd); // 注意防止溢出
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {
int a = sc.nextInt();
int b = sc.nextInt();
System.out.println(getLCM(a, b));
}
}
}
def get_gcd(a, b):
# 求最大公约数 - 使用辗转相除法
while b:
a, b = b, a % b
return a
def get_lcm(a, b):
# 求最小公倍数
gcd = get_gcd(a, b)
return a * b // gcd
while True:
try:
a, b = map(int, input().split())
print(get_lcm(a, b))
except:
break
算法及复杂度
算法分析
-
辗转相除法求GCD:
- 基于 a = k b + r a = kb + r a=kb+r 的原理
- 两数的最大公约数等于较小数和余数的最大公约数
-
最小公倍数计算:
- 利用 L C M ( a , b ) ∗ G C D ( a , b ) = a ∗ b LCM(a,b) * GCD(a,b) = a * b LCM(a,b)∗GCD(a,b)=a∗b
- 注意计算过程中的溢出问题
复杂度分析
- 时间复杂度: O ( log min ( a , b ) ) \mathcal{O}(\log \min(a,b)) O(logmin(a,b))
- 空间复杂度: O ( 1 ) \mathcal{O}(1) O(1)