美团二面:Kafka 高吞吐架构设计在生产端是如何体现的?

本文探讨了Kafka如何实现生产端的高吞吐量,包括多线程异步设计、Sender子线程与Kafka底层通信模块解耦、缓存中的批量数据处理。通过KafkaProducer主线程、RecordAccumulator缓存和Sender子线程的协同工作,实现了高效的消息发送。生产者使用RecordAccumulator批量缓存消息,并通过Sender子线程异步发送,有效提高了吞吐率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Kafka 一个特点就是吞吐量大,而且是大数据场景的首选消息队列。根据真实生产环境数据,Kafka 单机能达到同时生产和消费百万级量级的数据量。

这到底是怎样的一个概念呢?我们结合生产环境中对生产端发送消息的某个测试来说明下。

  • 生产环境配置:8 核 CPU,32G 内存,3 台机器分别安装 3 个 Broker,内网带宽很高,网络带宽瓶颈忽略不计。
  • 测试方法:每个消息大小设计为 100B,然后分别测试 1、2、3 生产者生产消息,同时 1、2、3 消费者消费消息,最后得出生产和消费成功的消息数和消息字节数。

生产者发送消息的吞吐量

当 3 个 Producer 往 3 个 Broker 发送消息的时候,生产者每秒平均向每台 Broker 生产 100 万条消息。

下面是测试结果:

D111DB5C-30AB-48FB-B42C-B2C2F14BA555.png

消费者消费消息的吞吐量

下面是测试结果:

373D6D2C-76D6-489E-88B0-064345785FBE.png

当 3 个 Consumer 向 3 个 Broker 拉取消息的时候,消费者每秒平均向每台 Broker 拉取 200 万条以上的消息。这个效果是不是很赞?

那么,Kafka 到底是如何做到这么高的吞吐量的呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值