
数学之美
文章平均质量分 83
介绍算法需要的数学知识,包括高等数学、线性代数、概率论与数理统计、矩阵论、数值分析,最优化导论等
阿兵-AI医疗
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
最优化算法之粒子群算法PSO
粒子群算法(PSO)属于群智能算法的一种,1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究。该算法是通过模拟鸟群捕食行为设计的。假设区域里就只有一块食物(即通常优化问题中所讲的最优解),鸟群的任务是找到这个食物源。鸟群在整个搜寻的过程中,通过相互传递各自的信息,让其他的鸟知道自己的位置,通过这样的协作,来判断自己找到的是不是最优解,同时也将最优解的信息传递给整个鸟群,最终,整个鸟群都能聚集在食物源周围,即我们所说的找到了最优解,即问题收敛。原创 2022-11-23 15:52:55 · 1398 阅读 · 0 评论 -
向量和矩阵的导数
在EM算法推导过程中,推导协方差矩阵就用到标量对矩阵的导数。基本概念 这里直接给出《机器视觉》[M]的内容截图。...原创 2019-10-15 22:23:59 · 271 阅读 · 0 评论 -
雅可比(Jacobi)计算特征值和特征向量
雅可比迭代法法在图形图像中很多地方用到求矩阵的特征值和特征向量,比如主成分分析、OBB包围盒等。编程时一般都是用数值分析的方法来计算,这里介绍一下雅可比迭代法求解特征值和特征向量。雅可比迭代法的原理,网上资料很多,详细可见参考资料1。这里我们简单介绍求解矩阵S特征值和特征向量的步骤:初始化特征向量为对角阵V,即主对角线的元素都是1.其他元素为0。在S的非主对角线元素中,找到绝对值最大元素 ...原创 2018-12-15 12:50:53 · 39260 阅读 · 6 评论 -
三线性插值(三维线性插值)
三线性插值(trilinear interpolation)主要是用于在一个3D的立方体中,通过给定顶点的数值然后计算立方体中其他点的数值的线性插值方法。具体推导过程见参考资料1,这里直接给出最终公式:其中,坐标(x,y,z)为c,(x0,y0,z0)为坐标相对最小的点。参考资料Trilinear interpolation...原创 2019-01-21 22:12:24 · 31383 阅读 · 0 评论 -
数值分析之数值微分(求波形的斜率或一阶导数)
我们如何从有限的点集(波形或曲线)得到它们的导数?比如电路中的波形。一般我们有三种近似求法,前向差分、后向差分和中心差分,中心差分误差最小。具体信息见参考资料。下面是三种方法定义的截图。参考资料Numerical Differentiation...原创 2019-06-05 22:31:02 · 4120 阅读 · 0 评论 -
泛函分析之变分法
泛函数以上截图来自于《变分法简介Part 1.(Calculus of Variations)》变分法研究泛函极值的方法就是所谓变分法。以上截图来自于《最速降线的数学模型—变分法》欧拉-拉格朗日方程...原创 2019-09-21 21:03:44 · 2888 阅读 · 0 评论 -
泛函分析之梯度下降流
基本概念 通常情况下,Euler-Lagrange方程都是非线性的偏微分方程,数值计算比较困难,可以引入一个时间辅助变量,将求解静态非线性偏微分方程问题转换为一个动态偏微分方程问题。当演化到稳态,便可得到变分问题对应的Euler-Lagrange方程的解。这就是我们要讨论的梯度下降流。...原创 2019-09-21 21:05:56 · 3298 阅读 · 4 评论