
深度学习
学习吴恩达《深度学习》笔记,以及一些实战项目。偏重于图像处理。
阿兵-AI医疗
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
AI临床应用应该回归理性-李安华教
AI临床应用应该回归理性-李安华教授原创 2022-03-19 13:08:05 · 258 阅读 · 1 评论 -
TensorFlow图像分割官方例子的常见报错
当我们看TensorFlow官网的U-net图像分割学习时,运行代码可能会遇到一些报错。下面列举了常见报错的解决方法,与大家分享。错误:下载数据失败tensorflow_datasets.core.download.downloader.DownloadError: Failed to get url http://www.robots.ox.ac.uk/~vgg/data/pets/data\images.tar.gz. HTTP code: 404.如下图所示解决方法如下图,在标记行中原创 2021-09-16 17:51:14 · 787 阅读 · 0 评论 -
1.1基础之可视化TensorFlow
可视化是认知程序的最直观方式。基本概念 TensorBoard是TensorFlow自带的一个强大的可视化工具,也是一个web应用程序套件。TensorBoard目前只支持7种可视化,即SCALARS、 IMAGES、AUDIO、GRAPHS、DISTRIBUTIONS、HISTOGRAMS和EMBEDDINGS。SCALARS:展示训练过程中的准确率、损失值、权重/偏置的变化情况...原创 2020-03-05 21:54:20 · 1943 阅读 · 3 评论 -
2.6CNN实战之人脸关键点识别
之前做一个医学图像特征点标注的项目,就是先从人脸关键点识别开始入门。基本概念 这是Kagge上一个比赛:Facial Keypoints Detection,我们这里使用CNN。大体内容如下图,识别人脸的15个关键点,每个关键点用x和y表示,所以神经网络的输出个数是30。'left_eye_center_x', 'left_eye_center_y','right_eye_cente...原创 2020-02-23 20:10:48 · 880 阅读 · 0 评论 -
损失函数之交叉熵
基本概念 分类问题希望解决的是将不同的样本分到事先定义好的类别中。对于单个输出节点的神经网络,当这个节点的输出越接近0时,这个样本越有可能是不合格的;反之如果输出越接近1,则这个样本越有可能是合格的。然而这样的做法并不容易推广到多分类的问题。通过神经网络解决多分类问题最常用的方法是设置n个输出节点,其中...原创 2019-12-01 13:59:12 · 250 阅读 · 0 评论 -
神经网络优化之正则化
正则化 为了避免过拟合问题,一个常用的方法是正则化(regularization)。正则化的思想就是在损失函数中加入刻画模型复杂的指标。假设用于刻画模型在训练数据上表现的损失函数为J(θ),那么在优化时不是直接优化J(θ),而是优化J(θ)+λR(w),其中R(w)刻画的是模型的复杂度,而λ表示模型复杂...原创 2019-12-01 13:32:38 · 1345 阅读 · 0 评论 -
神经网络优化之优化器
基本概念 梯度下降算法主要用于优化单个参数的取值,而反向传播算法给出了一个高效的方式在所有参数上使用梯度下降算法,从而使神经网络模型在训练数据上的损失函数尽可能小。需要注意的是,梯度下降法并不能保证被优化的函数达到全局最优解。只有当损失函数为凸函数时,梯度下降法才能保证全局最优解。 &nbs...原创 2019-12-01 13:22:24 · 1175 阅读 · 0 评论 -
神经网络优化之学习率
基本概念 在训练神经网络时,需要设置学习率(learning rate)控制参数更新的速度。学习率决定了参数每次更新的幅度,如果幅度过大,那么可能导致参数在极优值的两侧来回移动。相反,当学习率过小时,虽然能保证收敛性,但是这会大大降低优化速度。  ...原创 2019-12-01 13:18:37 · 2918 阅读 · 0 评论 -
激活函数
基本概念 激活函数(Activation Function)运行时激活神经网络中某一部分神经元,将激活信息向后传入下一层的神经网络。神经网络之所以能够解决非线性问题(如语音、图像识别),本质上就是激活函数加入了非线性因素,弥补了线性模型的表达力,把"激活的神经元的特征"通过函数保留并映射到下一层。&n...原创 2019-12-01 13:15:21 · 325 阅读 · 0 评论 -
模型的保存和恢复
训练好一个神经网络模型后,我们希望能够将其应用在预测数据上,所以需要保存和恢复模型。保存和恢复 TensorFlow提供了一个非常简单的API来存储和加载一个神经网络模型。虽然以上程序只指定了一个文件路径,但是在这个文件目录下会出现四个文件。这是因为TensorFlow会将计算图的结构和图上参数取...原创 2019-11-14 22:09:04 · 441 阅读 · 0 评论 -
使用Anaconda管理Python运行环境
Conda 是一个开源的软件包管理系统和环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换。Anaconda Conda分为Anaconda和Miniconda。Anaconda是包含一些常用包的版本,Miniconda则是精简版,需要啥装啥,所以推荐使用Miniconda。...原创 2019-11-14 22:05:43 · 394 阅读 · 0 评论 -
构建一个神经网络
构建一个三层神经网络,熟悉TensorFlow的运行方式TensorFlow的运行方式 TensorFlow的运行方式一般分为四步加载数据及定义超参数构建网络训练模型评估模型和进行预测示例演示 &nb...原创 2019-11-14 21:23:21 · 257 阅读 · 0 评论 -
TensorFlow基础知识
TensorFlow是一个采用数据流图(data flow graph),用于数值计算的开源软件库。编程方式 Tensorflow完全采用符号式编程,将图的定义和图的运算完全分开。一般是先定义各种变量,然后建立一个数据流图,在数据流图中规定各个变量之间的计算关系,最后需要对数据流图进行编译,但是此...原创 2019-11-14 21:03:38 · 254 阅读 · 0 评论