目录
针对以上这种情形,给出具体的决策方案,以及决策的依据及相应指标。
2024年高教社杯全国大学生数学建模竞赛题目
(请先阅读《全国大学生数学建模竞赛论文格式规范》)
B题 生产过程中的决策问题
某企业生产一种畅销的电子产品,需要分别购买两种零配件(零配件1和零配件2),在企业将两个零配件装配成成品后,在装配的成品中,只要其中一个零配件不合格,则成品一定不合格;如果两个零配件都合格,装配出的成品也不一定合格(受其他因素影响),此时需要对成品进行检测。企业可以选择报废,或者对其内部进行拆解,拆解过程会对零配件造成破坏,但不会花费拆卸费用。请建立数学模型,解决以下问题:
问题1
供应商声称一批零配件(零配件1或零配件2)的次品率不超过某个标称值。企业准备采用抽样检测方法决定是否接收这批零配件,检测费用由企业自行承担。
如果标称值为10%,根据你们的抽样检测方案,针对以下两种情形,分别给出具体结果:
(1)在95%的置信度下认定零配件次品率不超过标称值,则接收这批零配件;
(2)在90%的置信度下认定零配件次品率不超过标称值,则接收这批零配件。
问题2
已知两种零配件和成品的次品率,试为企业生产过程的各个阶段作出决策:
(1)对零配件是否直接进入装配环节:若对采购的每一件零配件进行检测,检测费用按次数计算,如果检测出不合格零配件则丢弃;否则零配件直接进入到装配环节;
(2)对装配好的每一件成品是否进行检测:如果不检测,装配后的成品直接进入到市场;若检测,只有检测合格的成品才进入到市场;
(3)对检测出的不合格成品是否进行拆解:如果不拆解,直接将不合格成品丢弃;否则对拆解的零配件,重复步骤(1),步骤(2);
(4)对用户购买的不合格成品进行调换:对召回的不合格成品进行调换,并产生一定的调换损失(如物流成本、企业信誉等);对退回的不合格成品,重复步骤(3)。
请根据你们所做的决策,对下表中的情形给出具体的决策方案,并给出决策的依据及相应的标定结果。
表1 企业在生产中遇到的情况(问题2)
情况 | 零件1 | 零件2 | 成品 | 市场 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
次品率 | 购买单价 | 检测成本 | 次品率 | 购买单价 | 检测成本 | 次品率 | 检测成本 | 装配成本 | 检测成本 | 销售成本 | 调换损失 | |
1 | 10% | 4 | 2 | 10% | 18 | 3 | 10% | 6 | 3 | 56 | 6 | 5 |
2 | 20% | 4 | 2 | 20% | 18 | 3 | 20% | 6 | 3 | 56 | 6 | 5 |
3 | 10% | 4 | 2 | 10% | 18 | 3 | 10% | 6 | 3 | 56 | 30 | 5 |
4 | 20% | 4 | 2 | 20% | 18 | 3 | 20% | 6 | 2 | 56 | 30 | 5 |
5 | 10% | 4 | 1 | 10% | 18 | 1 | 10% | 6 | 2 | 56 | 10 | 5 |
6 | 5% | 4 | 2 | 5% | 18 | 3 | 5% | 6 | 3 | 56 | 10 | 40 |
问题3
对 m道工序、n个零配件,已知零配件、半成品和成品的次品率,重复问题2,给出生产过程的决策方案图。图1给出了2道工序、8个零配件的情况,具体数值由表2给出。
表2 企业在生产中遇到的情况(问题3)
零配件 | 次品率 | 购买单价 | 检测成本 | 半成品 | 次品率 | 装配成本 | 检测成本 | 拆解费用 |
---|---|---|---|---|---|---|---|---|
1 | 10% | 2 | 1 | 1 | 10% | 8 | 4 | 6 |
2 | 10% | 8 | 1 | 2 | 10% | 8 | 4 | 6 |
3 | 10% | 12 | 2 | 3 | 10% | 8 | 4 | 6 |
4 | 10% | 2 | 1 | - | - | - | - | - |
5 | 10% | 8 | 1 | 成品 | 10% | 8 | 6 | 10 |
6 | 10% | 12 | 2 | - | - | - | - | - |
7 | 10% | 8 | 1 | - | - | 市场售价 | 调换损失 | - |
8 | 10% | 12 | 2 | 成品 | - | 200 | 40 | - |
针对以上这种情形,给出具体的决策方案,以及决策的依据及相应指标。
问题4 假设问题2和问题3中零配件、半成品和成品的次品率均是通过抽样检测方法(例如,你在问题1中使用的方法)得到的,请重新完成问题2和问题3。
附录说明
(1)半成品、成品的次品率是将正品零配件(或者半成品)装配后的产品次品率;
(2)不合格成品中的调换损失是指除调换次品之外的损失(如:物流成本、企业信誉等);
(3)购买单价、检测成本、装配成本、市场售价、调换损失和拆解费用的单位均为元/件。
总览:按题意到算法的映射
-
问题1(最少抽样次数的接收检验) → 统计抽样与顺序检验(SPRT) / 固定样本 (n, c) 单次抽样计划,辅以贝叶斯优化(BO) 选参以最小期望成本/样本量;给出两类置信要求 95%/90% 的具体方案。
-
问题2(已知次品率下的全流程决策) → 决策树/动态规划(DP) 逐阶段最小化期望总成本;在更大规模写法中可升级为0–1 MIP;结果对照表 1 六种情形。
-
问题3(m 道工序、n 个零配件) → 分解协调(ADMM/拉格朗日分解) + 子问题DP/MIP并行 的扩展式求解;按图1/表2示例展示可扩展性。
-
问题4(次品率来自抽样估计) → 把问题1的抽样不确定性向下游传播:做保形预测(CP)/区间化 + 分布鲁棒优化(DRO) 的“稳健化重算”。
问题1:最少抽样次数的接收检验(10%标称,双置信要求)
选型(速查表对应): “评估昂贵/抽样要尽量少”→ SPRT(顺序概率比检验) 优先;给对照 固定样本单次抽样 (n, c)(画 OC/ASN 曲线)。目标是满足:
-
95% 置信下“判超标→拒收”,
-
90% 置信下“判不超→接收”。
写法要点:
-
两类方案并列:
-
SPRT:设 H0:p≤p0=0.1H_0:p\le p_0=0.1H0:p≤p0=0.1, H1:p>p0H_1:p>p_0H1:p>p0。由(α,β)映射到对数似然边界 A,BA,BA,B。逐件抽到停即可——期望样本数最小。
-
(n, c) 固定样本方案:用二项尾概率联立两端约束解最小 nnn,给若干可行 (n,c)(n,c)(n,c) 备选。
-
-
成本敏感版本:把“单位检验成本+误判代价”写成期望总成本,用BO扫描 α,β 或 (n,c),以“最小期望成本 / 最小期望样本数”选型(这就是我们速查表说的“评估贵→BO”)。
-
交付:
-
图1:OC 曲线(不同 p 的接受概率)。
-
图2:ASN/EN 曲线(不同 p 的期望样本量)。
-
表A:给出满足 95%/90% 的 SPRT 决策阈值与 (n,c) 候选;用加粗标注“最小样本/最小成本”解。
-
-
对题面两情形给“具体结果”:把你选择的方案代入,报告“需要的样本量、若干次品数出现时的决策、期望成本/时间”等。
小加分:给一个 SPRT vs (n,c) 的“时间—准确性”权衡小结图;并在附录给出精确二项法和正态近似两套计算,显示严谨性。
问题2:已知次品率下的多阶段决策(含拆解与换货)
选型(速查表对应): 决策树/DP 逐阶段最小化期望总成本;若考虑“部分抽检比例”可做连续变量→0–1/混合整数规划(MIP)。研究对象与数据在表1给定六种情形。
建模要点(可直接写进论文 3–4 个公式):
-
状态流:零配件入厂→(是否检)→装配→成品(是否检)→不合格成品(是否拆解)→回流/丢弃。
-
期望成本/收益:
E成本=C购+C检+C装+C拆+C调换−销售收入\text{E成本} = C_{\text{购}}+C_{\text{检}}+C_{\text{装}}+C_{\text{拆}}+C_{\text{调换}} - \text{销售收入}E成本=C购+C检+C装+C拆+C调换−销售收入其中各项按通过率/拦截率在各节点展开(把“只要一个零配件不合格则成品不合格”的逻辑显式写进联合通过率)。
-
决策变量:x1,x2∈{0,1}x_1,x_2\in\{0,1\}x1,x2∈{0,1}(两零配件是否检),x3∈[0,1]x_3\in[0,1]x3∈[0,1](成品抽检比例),x4∈{0,1}x_4\in\{0,1\}x4∈{0,1}(是否拆解)。
-
目标:最小化“每件投入的期望总成本”或最大化“期望单位利润”(两种口径都可,在文中说明)。
-
约束:流量守恒、非负、拆解回流只回正品零配件等。
交付 & 图表:
-
表B(核心):六种情形的最优 (x1,x2,x3,x4)(x_1,x_2,x_3,x_4)(x1,x2,x3,x4)、单位利润、单位成本构成、出厂不合格率、期望检测量。
-
图3:决策树/状态转移图(清晰画出回流与拆解)。
-
图4:敏感性:对“成品检测成本、调换损失、拆解费”各±50% 的 Tornado 图。
小加分:把“只检零配件/只检成品/全检/全不检/部分抽检”的 5 类策略放在一张 雷达图(利润、客诉率、检测量、报废率)上对比。
问题3:m 工序、n 零配件的扩展(图1/表2)
选型(速查表对应): 规模上来后做“分解协调”:
-
上层:用 ADMM/拉格朗日分解 把多工序耦合(共享产能/回流)松弛成分块;
-
下层子问题:每个工序/子装配线用 DP/MIP 求最优检—装—检—拆策略;并行求解再由上层一致化。
写法要点:
-
图5:两层框架图(上层协调变量与下层策略变量)。
-
算法细节:给出 ADMM 残差收敛曲线、并行加速比(核数×效率),以及与“直接大MIP”在时间—质量上的对比。
-
通用性:把图1/表2的数据作为演示,报告“解的可扩展性”与“近似最优 Gap”。(题面数据足以做一版可跑可展示的对照。)
问题4:抽样估计带来的不确定性→稳健重算
选型(速查表对应): 保形预测(CP) 给各环节次品率的覆盖保证区间 + DRO 在该区间/邻域内求“最坏情形仍可接受”的策略;把问题2/3 整体重算。
写法要点:
-
上游:用问题1的抽样结果构造各 ppp 的区间(或后验分布);CP 可保证覆盖率,方便合规叙述“在 1−α 置信下”。
-
下游:以 Wasserstein 球半径 ρ 或“区间盒”描述不确定集,做 ρ–性能权衡曲线;报告“稳健利润”与“可行率”。
-
仿真验证:蒙特卡罗把 ppp 按区间/后验抽样,重跑策略,展示在线覆盖与利润分布。
小加分:附一张“名义解 vs 稳健解”在抽样偏差下的失效对比;稳健解的盈亏分位(P5/Median/P95)。
统一的“论文交付件”清单(直接照着做)
-
流程总图(一图总览 问1→问4 的信息流与决策流)。
-
问题1:OC 与 ASN 曲线、(n,c)/SPRT 方案表、两情形具体操作与样本量/成本。
-
问题2:状态转移图、六情形决策与指标表、关键参数敏感性(Tornado)。
-
问题3:分解协调框架图、收敛与并行效率、与大MIP时间—质量对比;图1/表2结果复现实验。
-
问题4:覆盖率—区间宽度曲线、ρ–性能曲线、名义 vs 稳健方案对比(分位收益/不合格率)。