数学建模算法适用场景速查表以2024B题为例

目录

2024年高教社杯全国大学生数学建模竞赛题目

B题 生产过程中的决策问题

问题1

问题2

表1 企业在生产中遇到的情况(问题2)

问题3

表2 企业在生产中遇到的情况(问题3)

针对以上这种情形,给出具体的决策方案,以及决策的依据及相应指标。

附录说明

总览:按题意到算法的映射

问题1:最少抽样次数的接收检验(10%标称,双置信要求)

问题2:已知次品率下的多阶段决策(含拆解与换货)

问题3:m 工序、n 零配件的扩展(图1/表2)

问题4:抽样估计带来的不确定性→稳健重算

统一的“论文交付件”清单(直接照着做)


2024年高教社杯全国大学生数学建模竞赛题目

(请先阅读《全国大学生数学建模竞赛论文格式规范》)

B题 生产过程中的决策问题

某企业生产一种畅销的电子产品,需要分别购买两种零配件(零配件1和零配件2),在企业将两个零配件装配成成品后,在装配的成品中,只要其中一个零配件不合格,则成品一定不合格;如果两个零配件都合格,装配出的成品也不一定合格(受其他因素影响),此时需要对成品进行检测。企业可以选择报废,或者对其内部进行拆解,拆解过程会对零配件造成破坏,但不会花费拆卸费用。请建立数学模型,解决以下问题:

问题1

供应商声称一批零配件(零配件1或零配件2)的次品率不超过某个标称值。企业准备采用抽样检测方法决定是否接收这批零配件,检测费用由企业自行承担。

如果标称值为10%,根据你们的抽样检测方案,针对以下两种情形,分别给出具体结果:

(1)在95%的置信度下认定零配件次品率不超过标称值,则接收这批零配件;

(2)在90%的置信度下认定零配件次品率不超过标称值,则接收这批零配件。

问题2

已知两种零配件和成品的次品率,试为企业生产过程的各个阶段作出决策:

(1)对零配件是否直接进入装配环节:若对采购的每一件零配件进行检测,检测费用按次数计算,如果检测出不合格零配件则丢弃;否则零配件直接进入到装配环节;

(2)对装配好的每一件成品是否进行检测:如果不检测,装配后的成品直接进入到市场;若检测,只有检测合格的成品才进入到市场;

(3)对检测出的不合格成品是否进行拆解:如果不拆解,直接将不合格成品丢弃;否则对拆解的零配件,重复步骤(1),步骤(2);

(4)对用户购买的不合格成品进行调换:对召回的不合格成品进行调换,并产生一定的调换损失(如物流成本、企业信誉等);对退回的不合格成品,重复步骤(3)。

请根据你们所做的决策,对下表中的情形给出具体的决策方案,并给出决策的依据及相应的标定结果。

表1 企业在生产中遇到的情况(问题2)

情况

零件1

零件2

成品

市场

次品率

购买单价

检测成本

次品率

购买单价

检测成本

次品率

检测成本

装配成本

检测成本

销售成本

调换损失

1

10%

4

2

10%

18

3

10%

6

3

56

6

5

2

20%

4

2

20%

18

3

20%

6

3

56

6

5

3

10%

4

2

10%

18

3

10%

6

3

56

30

5

4

20%

4

2

20%

18

3

20%

6

2

56

30

5

5

10%

4

1

10%

18

1

10%

6

2

56

10

5

6

5%

4

2

5%

18

3

5%

6

3

56

10

40

问题3

对 m道工序、n个零配件,已知零配件、半成品和成品的次品率,重复问题2,给出生产过程的决策方案图。图1给出了2道工序、8个零配件的情况,具体数值由表2给出。

表2 企业在生产中遇到的情况(问题3)

零配件

次品率

购买单价

检测成本

半成品

次品率

装配成本

检测成本

拆解费用

1

10%

2

1

1

10%

8

4

6

2

10%

8

1

2

10%

8

4

6

3

10%

12

2

3

10%

8

4

6

4

10%

2

1

-

-

-

-

-

5

10%

8

1

成品

10%

8

6

10

6

10%

12

2

-

-

-

-

-

7

10%

8

1

-

-

市场售价

调换损失

-

8

10%

12

2

成品

-

200

40

-

针对以上这种情形,给出具体的决策方案,以及决策的依据及相应指标。

问题4​ 假设问题2和问题3中零配件、半成品和成品的次品率均是通过抽样检测方法(例如,你在问题1中使用的方法)得到的,请重新完成问题2和问题3。

附录说明

(1)半成品、成品的次品率是将正品零配件(或者半成品)装配后的产品次品率;

(2)不合格成品中的调换损失是指除调换次品之外的损失(如:物流成本、企业信誉等);

(3)购买单价、检测成本、装配成本、市场售价、调换损失和拆解费用的单位均为元/件。

总览:按题意到算法的映射

  • 问题1(最少抽样次数的接收检验) → 统计抽样与顺序检验(SPRT) / 固定样本 (n, c) 单次抽样计划,辅以贝叶斯优化(BO) 选参以最小期望成本/样本量;给出两类置信要求 95%/90% 的具体方案。

  • 问题2(已知次品率下的全流程决策)决策树/动态规划(DP) 逐阶段最小化期望总成本;在更大规模写法中可升级为0–1 MIP;结果对照表 1 六种情形。

  • 问题3(m 道工序、n 个零配件)分解协调(ADMM/拉格朗日分解) + 子问题DP/MIP并行 的扩展式求解;按图1/表2示例展示可扩展性。

  • 问题4(次品率来自抽样估计) → 把问题1的抽样不确定性向下游传播:做保形预测(CP)/区间化 + 分布鲁棒优化(DRO) 的“稳健化重算”。


问题1:最少抽样次数的接收检验(10%标称,双置信要求)

选型(速查表对应): “评估昂贵/抽样要尽量少”→ SPRT(顺序概率比检验) 优先;给对照 固定样本单次抽样 (n, c)(画 OC/ASN 曲线)。目标是满足:

  • 95% 置信下“判超标→拒收”,

  • 90% 置信下“判不超→接收”。

写法要点:

  1. 两类方案并列

    • SPRT:设 H0:p≤p0=0.1H_0:p\le p_0=0.1H0​:p≤p0​=0.1, H1:p>p0H_1:p>p_0H1​:p>p0​。由(α,β)映射到对数似然边界 A,BA,BA,B。逐件抽到停即可——期望样本数最小

    • (n, c) 固定样本方案:用二项尾概率联立两端约束解最小 nnn,给若干可行 (n,c)(n,c)(n,c) 备选。

  2. 成本敏感版本:把“单位检验成本+误判代价”写成期望总成本,用BO扫描 α,β 或 (n,c),以“最小期望成本 / 最小期望样本数”选型(这就是我们速查表说的“评估贵→BO”)。

  3. 交付

    • 图1:OC 曲线(不同 p 的接受概率)。

    • 图2:ASN/EN 曲线(不同 p 的期望样本量)。

    • 表A:给出满足 95%/90% 的 SPRT 决策阈值(n,c) 候选;用加粗标注“最小样本/最小成本”解。

  4. 对题面两情形给“具体结果”:把你选择的方案代入,报告“需要的样本量、若干次品数出现时的决策、期望成本/时间”等。

小加分:给一个 SPRT vs (n,c) 的“时间—准确性”权衡小结图;并在附录给出精确二项法正态近似两套计算,显示严谨性。


问题2:已知次品率下的多阶段决策(含拆解与换货)

选型(速查表对应): 决策树/DP 逐阶段最小化期望总成本;若考虑“部分抽检比例”可做连续变量→0–1/混合整数规划(MIP)。研究对象与数据在表1给定六种情形。

建模要点(可直接写进论文 3–4 个公式):

  • 状态流:零配件入厂→(是否检)→装配→成品(是否检)→不合格成品(是否拆解)→回流/丢弃。

  • 期望成本/收益

    E成本=C购+C检+C装+C拆+C调换−销售收入\text{E成本} = C_{\text{购}}+C_{\text{检}}+C_{\text{装}}+C_{\text{拆}}+C_{\text{调换}} - \text{销售收入}E成本=C购​+C检​+C装​+C拆​+C调换​−销售收入

    其中各项按通过率/拦截率在各节点展开(把“只要一个零配件不合格则成品不合格”的逻辑显式写进联合通过率)。

  • 决策变量:x1,x2∈{0,1}x_1,x_2\in\{0,1\}x1​,x2​∈{0,1}(两零配件是否检),x3∈[0,1]x_3\in[0,1]x3​∈[0,1](成品抽检比例),x4∈{0,1}x_4\in\{0,1\}x4​∈{0,1}(是否拆解)。

  • 目标:最小化“每件投入的期望总成本”或最大化“期望单位利润”(两种口径都可,在文中说明)。

  • 约束:流量守恒、非负、拆解回流只回正品零配件等。

交付 & 图表:

  • 表B(核心):六种情形的最优 (x1,x2,x3,x4)(x_1,x_2,x_3,x_4)(x1​,x2​,x3​,x4​)、单位利润、单位成本构成、出厂不合格率、期望检测量。

  • 图3:决策树/状态转移图(清晰画出回流与拆解)。

  • 图4:敏感性:对“成品检测成本、调换损失、拆解费”各±50% 的 Tornado 图。

小加分:把“只检零配件/只检成品/全检/全不检/部分抽检”的 5 类策略放在一张 雷达图(利润、客诉率、检测量、报废率)上对比。


问题3:m 工序、n 零配件的扩展(图1/表2)

选型(速查表对应): 规模上来后做“分解协调”:

  • 上层:用 ADMM/拉格朗日分解 把多工序耦合(共享产能/回流)松弛成分块;

  • 下层子问题:每个工序/子装配线用 DP/MIP 求最优检—装—检—拆策略;并行求解再由上层一致化。

写法要点:

  • 图5:两层框架图(上层协调变量与下层策略变量)。

  • 算法细节:给出 ADMM 残差收敛曲线、并行加速比(核数×效率),以及与“直接大MIP”在时间—质量上的对比。

  • 通用性:把图1/表2的数据作为演示,报告“解的可扩展性”与“近似最优 Gap”。(题面数据足以做一版可跑可展示的对照。)


问题4:抽样估计带来的不确定性→稳健重算

选型(速查表对应): 保形预测(CP) 给各环节次品率的覆盖保证区间 + DRO 在该区间/邻域内求“最坏情形仍可接受”的策略;把问题2/3 整体重算

写法要点:

  • 上游:用问题1的抽样结果构造各 ppp 的区间(或后验分布);CP 可保证覆盖率,方便合规叙述“在 1−α 置信下”。

  • 下游:以 Wasserstein 球半径 ρ 或“区间盒”描述不确定集,做 ρ–性能权衡曲线;报告“稳健利润”与“可行率”。

  • 仿真验证:蒙特卡罗把 ppp 按区间/后验抽样,重跑策略,展示在线覆盖与利润分布。

小加分:附一张“名义解 vs 稳健解”在抽样偏差下的失效对比;稳健解的盈亏分位(P5/Median/P95)。


统一的“论文交付件”清单(直接照着做)

  1. 流程总图(一图总览 问1→问4 的信息流与决策流)。

  2. 问题1:OC 与 ASN 曲线、(n,c)/SPRT 方案表、两情形具体操作与样本量/成本。

  3. 问题2:状态转移图、六情形决策与指标表、关键参数敏感性(Tornado)。

  4. 问题3:分解协调框架图、收敛与并行效率、与大MIP时间—质量对比;图1/表2结果复现实验。

  5. 问题4:覆盖率—区间宽度曲线、ρ–性能曲线、名义 vs 稳健方案对比(分位收益/不合格率)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值