
AI驱动的对冲基金项目介绍
文章平均质量分 87
AI驱动的对冲基金系统是一个创新性金融科技项目,结合了人工智能和量化交易的优势,为投资决策提供智能化支持。该系统利用多种AI分析师协同工作,通过大型语言模型(LLM)进行综合分析,对股票市场进行预测并作出交易决策。无论是个人投资者还是专业机构,都能从这一系统获得独特的市场洞察和投资参考。
优惠券已抵扣
余额抵扣
还需支付
¥19.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
infiniteWei
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【deepseek】ollama & chatbox & webui 本地部署deepseek 踩坑记录
访问模型库:https://ollama.com/library/deepseek-r1。官网直达:https://ollama.com/download。② 接口地址:http://localhost:11434/v1。4090 显卡,32B模型,输出速度: 31 token/s。• 高性能设备:32B版本(32GB内存+12GB显存)官网:https://chatboxai.app/zh。• 入门级:1.5B版本(4GB内存+核显可运行)• 进阶推荐:7B版本(8GB内存+4GB显存)原创 2025-02-06 13:40:55 · 2051 阅读 · 0 评论 -
深入掌握DeepSeek及AI提示语设计研究指南
DeepSeek及其作为通用人工智能工具的应用,详细阐述了它的能力范围,包括智能对话、文本生成、代码辅助、自然语言理解等。文章着重介绍了如何有效利用提示语(Prompt)与DeepSeek交互,特别是针对推理模型与通用模型的不同策略,并提供了丰富的场景化应用示例和提示语设计技巧。此外,文档还探讨了提升AI生成内容质量的方法,如引入元叙事框架、情感融入策略等,并分析了在人机共生时代,如何培养AI思维、整合力、引导力与判断力等核心能力,强调人在AI内容生成中的主导作用原创 2025-04-30 17:19:11 · 114 阅读 · 0 评论 -
解锁未来工作方式:什么是 AI Agent?| Unlocking the Future of Work: What Are AI Agents?
人工智能代理(AI Agent)是一种能够感知环境、做出决策并执行操作的智能系统。它可以是软件程序,也可以是物理设备,例如机器人或聊天机器人。AnAI agentAI Agent 代表了人机交互方式的一次重大飞跃。无论你是开发者、创业者还是企业管理者,现在都是探索 AI Agent 如何提升运营效率、改善客户体验并开启新机遇的最佳时机。保持好奇,保持学习,今天就开始尝试构建属于你自己的 AI Agent!原创 2025-04-29 19:29:53 · 510 阅读 · 0 评论 -
【deepseek驾驶员】生成程序员名片页面并提供下载按钮prompt
直接上干货:prompt:示例:示例:将如下html代码保存到 test.html文件,浏览器打开即可原创 2025-05-01 15:32:53 · 82 阅读 · 0 评论 -
RAG、DeepSearch、DeepResearch 对比分析
RAG、DeepSearch、DeepResearch 对比分析原创 2025-04-10 09:00:49 · 229 阅读 · 0 评论 -
【AI对冲基金】Python项目手把手教学AI驱动的对冲基金系统实现逻辑
该文件介绍了一个AI驱动的对冲基金系统,用户可以选择不同的分析师和模型进行股票交易决策。系统的主要流程包括:解析命令行参数、选择AI分析师、决定使用本地或云端LLM模型、创建工作流、生成图形、验证日期格式、设置投资组合、运行系统并输出交易结果。示例中,用户选择了Aswath Damodaran作为分析师,并使用本地Ollama模型的gemma3:27b进行分析。系统对AAPL和MSFT进行了分析,并给出了中立的交易建议,认为当前数据不足以支持明确的买入或卖出信号,建议持有。原创 2025-05-17 18:47:52 · 183 阅读 · 0 评论 -
【AI对冲基金】Python项目手把手教学AI对冲基金实现逻辑--回测
本文介绍了一个基于Python的AI对冲基金项目中的回测功能实现。通过使用本地模型ollama的gemma3 (27B)进行测试,项目展示了如何选择分析师和模型,并生成回测结果。回测结果显示,投资组合的现金余额为$91,410.60,总持仓价值为$10,786.40,总价值为$102,197.00,回报率为+2.20%,夏普比率为8.05,索提诺比率为197.47,最大回撤为0.02%。回测过程中,对AAPL、MSFT和NVDA等股票进行了持仓操作,最终在2025年4月23日对NVDA进行了买入操作。该项目原创 2025-05-17 18:18:53 · 378 阅读 · 0 评论