
炼丹技巧
无意识积累中
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
杂乱无法分类的文章:PyG配置
PyG配置原创 2023-02-27 11:37:13 · 141 阅读 · 0 评论 -
深度学习基础----Exponential Moving Average
pytorch实现的时候非常需要的基础知识:(参考:)pytorch实现的时候非常需要的基础知识:(参考:)pytorch实现:(参考一下博客:)原创 2022-12-10 00:42:03 · 557 阅读 · 0 评论 -
深度学习基础----低秩矩阵分解
良昊秩矩阵分解的意师兄的低思是:这里的元学习器是参数(其实就是一个矩阵) 但是要customized context representations for user-specific multi-behaviors就有点困难 是hold不住, 所以, 要先把这一个用两个transformation先变成两个小的 然后, 再把这两个小的乘回原来的形状....原创 2021-12-17 05:25:18 · 1645 阅读 · 0 评论 -
pytorch下GAT完全理解
参考的知乎文章, 非常好:通过pytorch深入理解图注意力网络(GAT) - 知乎自己手动过程:原创 2021-12-09 10:56:29 · 1283 阅读 · 0 评论 -
Pytorch----模型的保存, 加载和直接测试
模型的保存和加载:保存参数表torch.save(the_model.state_dict(), PATH)the_model = TheModelClass(*args, **kwargs)the_model.load_state_dict(torch.load(PATH))直接保存模型 (不是的, 你的pth变量会保存很多东西)torch.save(the_model, PATH)the_model = torch.load(PATH)模型的直接测试:在pre.原创 2021-02-09 20:05:40 · 8518 阅读 · 1 评论 -
炼丹技巧----显存资源的占用
转自: https://blog.csdn.net/u012370185/article/details/952341251. 显存的占用当在GPU上跑一个模型时,显存的占用主要有两部分:模型的输出(特征图、特征图的梯度)、模型的参数(权重矩阵、偏置值、梯度)1. 模型参数的显存占用:(例如:卷积核的参数、BN层、全连接层的参数等(池化层没有参数))2. 如果是在训练阶段,需要反向传播更新参数值,所以每个参数都需要存储梯度。所以模型参数的显存占用,与采用的优化器有关。 ...转载 2020-12-27 08:35:37 · 1824 阅读 · 0 评论 -
炼丹技巧----不断积累
先别急着写代码,多花一点时间进行数据预处理: 了解数据分布并找出其中规律 发现重复样本和错误标签 奇妙新颖的说法:神经网络是数据集的压缩版本 搜索,过滤,排序 可视化可以发现异常值,异常值能揭示数据的质量或预处理中的一些错误 设置端到端的训练评估框架: 在训练之前,建立一个完整的训练+评估框架 选择一个简单又不至于搞砸的模型 固定随机种子 使用固定随机种子,保证运行代码的两次结果相同,消除差异因素 简单化: .原创 2020-10-29 00:37:30 · 550 阅读 · 1 评论