子流形卷积层
Convolution is the most common operation for processing data in deep learning. However, since most of the data we paid attention to, such as pictures and videos, can be seen as regular dense grids, convolution is also based on the characteristics of this dense structure, but in fact, there are a lot of data that do not meet the characteristics of regular and dense, such as one-dimensional curves in two-dimensional space, two-dimensional curved surfaces in three-dimensional space, and 3D point clouds.
卷积是深度学习中处理数据的最常见操作。 但是,由于我们关注的大多数数据(例如图片和视频)可以看作是规则的密集网格,因此卷积也基于这种密集结构的特征,但是实际上,有很多数据可以不满足规则和密集的特征,例如二维空间中的一维曲线,三维空间中的二维曲面和3D点云。
When the data structure is sparse, directly applying the traditional dense convolution to these data will waste a lot of computing resources due to invalid calculations in the empty space, so it is very important to use sparsity to process these data. As the convolution layer deepens, the sparsity of the data cannot be maintained. As shown in Figure above, the input data is a one-dimensional curve in a two-dimensional space. But after traditional convolution, the extracted features are no longer sparse. The author calls this phenomenon the submanifold expansion problem, submanifolds refer to sparse input data, such as one-dimensional curves in two-dimensional space, two-dimensional curved surfaces and point clouds in three-dimensional space, and they do not occupy the space in which they are located.
当数据结构稀疏时,由于在空空间中无效的计算,直接对这些数据应用传统的密集卷积将浪费大量计算资源,因此使用稀疏性来处理这些数据非常重要。 随着卷积层加深,无法保持数据的稀疏性。 如上图所示,输入数据是二维空间中的一维曲线。 但是在传统的卷积之后,提取的特征不再稀疏。 作者将此现象称为子流形扩展问题,子流形是指稀疏的输入数据,例如二维空间中的一维曲线,二维空间中的二维曲面和点云,它们不占据空间它们所在的位置。
In order to extract point cloud features with spar