两种方法使用
np.unique
和
np.bincount
为了得到最主要的颜色可以建议。另外,在链接页面中,它还谈到
bincount
作为一个更快的选择,所以这可能是一条路。
接近1
def unique_count_app(a):
colors, count = np.unique(a.reshape(-1,a.shape[-1]), axis=0, return_counts=True)
return colors[count.argmax()]
接近2
def bincount_app(a):
a2D = a.reshape(-1,a.shape[-1])
col_range = (256, 256, 256) # generically : a2D.max(0)+1
a1D = np.ravel_multi_index(a2D.T, col_range)
return np.unravel_index(np.bincount(a1D).argmax(), col_range)
验证和计时
1000 x 1000
密集区域的彩色图像
[0,9)
对于可重复的结果-
In [28]: np.random.seed(0)
...: a = np.random.randint(0,9,(1000,1000,3))
...:
...: print unique_count_app(a)
...: print bincount_app(a)
[4 7 2]
(4, 7, 2)
In [29]: %timeit unique_count_app(a)
1 loop, best of 3: 820 ms per loop