android二分查找法简书,二分查找法

本文介绍了二分查找算法的原理及应用,包括其优缺点、适用场景、时间复杂度分析及伪代码实现。适合用于理解快速查找方法及其局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

优缺点

二分查找又称折半查找。

优点:比较次数少,查找速度快,平均性能好。

缺点:要求待查表为有序表,且插入删除困难。

因此,折半查找方法适用于不经常变动而查找频繁的有序列表。

举个例子

首先,假设表中元素是按升序排列,

将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;

否则利用中间位置记录将表分成前、后两个子表,

如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,

否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录使查找成功,或直到子表不存在为止,此时查找不成功

算法复杂度

二分查找的基本思想是将n个元素分成大致相等的两部分,

取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;

如果x

如果x>a[n/2],则只要在数组a的右半部搜索x.

时间复杂度无非就是while循环的次数!

总共有n个元素,

渐渐跟下去就是n,n/2,n/4,....n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数

由于你n/2^k取整后>=1

即令n/2^k=1

可得k=log2n,(是以2为底,n的对数)

所以时间复杂度可以表示O()=O(logn)

伪代码

下面提供一段二分查找实现的[伪代码]

int BinSearch(SeqList *R,int n,KeyType K)

{

//在有序表R[0..n-1]中进行二分查找,成功时返回结点的位置,失败时返回-1

int low=0,high=n-1,mid;//置当前查找区间上、下界的初值

while(low<=high)

{

if(R[low].key==K)

return low;

if(R[high].key==k)

return high; //当前查找区间R[low..high]非空

mid=low+((high-low)/2);

/*使用(low+high)/2会有整数溢出的问题

(问题会出现在当low+high的结果大于表达式结果类型所能表示的最大值时,

这样,产生溢出后再/2是不会产生正确结果的,而low+((high-low)/2)

不存在这个问题*/

if(R[mid].key==K)

return mid;//查找成功返回

if(R[mid].key

low=mid+1;//继续在R[mid+1..high]中查找

else

high=mid-1;//继续在R[low..mid-1]中查找

}

if(low>high)

return -1;//当low>high时表示所查找区间内没有结果,查找失败

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值