python header=none_pandas.read_csv()函数读取文件时,关于“header=None”影响读取列数区间的右闭合总结...

本文详细介绍了在使用pandas.read_csv()读取无列名CSV文件时,设置`header=None`参数如何影响列的选取。当设置`header=None`时,使用`ix[:,0:4]`选取列会形成左闭右闭的区间,而不设置则为左闭右开。同时,文章还探讨了当设置自定义列名时,该行为仍然不变。" 122931557,7800548,Python matplotlib箱图可视化指南,"['数据挖掘', 'Python', '数据可视化']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于一个没有字段名标题的数据,如data.csv

1.获取数据内容。pandas.read_csv(“data.csv”)默认情况下,会把数据内容的第一行默认为字段名标题。

import pandas as pd

# 读取数据

df = pd.read_csv("../data/data.csv")

print(df)

为了解决这个问题,我们添加“header=None”,告诉函数,我们读取的原始文件数据没有列索引。因此,read_csv为自动加上列索引。

import pandas as pd

# 读取数据

df = pd.read_csv("../data/data.csv", header=None)

print(df)

2.局部获取。有时候我们需要取某些列数据,如下(X,y):

pd.read_csv()函数有"header=None"参数:

import pandas as pd

# 读取数据

df = pd.read_csv("../data/data.csv", header=None)

# 注意有"header=None", df.ix[:,0:4]就是左闭右闭的区间

X= df.ix[:,0:4]

y = df.ix[:,5]

print(X)

print(y)

pd.read_csv()函数没有"header=None"参数:

import pandas as pd

# 读取数据

df = pd.read_csv("../data/data.csv")

# 注意没有"header=None", df.ix[:,0:4]就是左闭右开的区间

X= df.ix[:,0:4] # 实际上X应该是df.ix[:,0:5]

y = df.ix[:,5]

print(X)

print(y)

在第二种情况中,带上names属性还是df.ix[:,0:4]就是左闭右开的区间。

# 设置表头

names = ["US0","US1","US2","US3","US4","Class"]

# 读入数据 (没有属性行:header=None)

df = pd.read_csv("../data/data.csv", names=names)

# 注意没有"header=None", df.ix[:,0:4]就是左闭右开的区间

X= df.ix[:,0:4] # 实际上X应该是df.ix[:,0:5]

y = df.ix[:,5]

print(df)

print(X)

print(y)

总结:pd.read_csv()函数,有"header=None", df.ix[:,0:4]就是左闭右闭的区间;没有"header=None", df.ix[:,0:4]就是左闭右开的区间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值