OpenMMLab Project
The OpenMMLab project aims at building high-quality open-source toolboxes for
several
important research areas, including object detection, action recognition,
etc.
Read More
Face Analysis
MMLAB develops novel algorithms for automatically detecting faces, locating
facial keypoints, aligning face images, and identifying or verifying a
person from a digital image or a video stream.
Read More
Person Analysis
Automatically understanding the behaviors of crowd from video sequences is of
great
interest to the computer vision community, and has drawn more and more
attentions
in recent years. It has important applications to event recognition, traffic
flow estimation, behavior prediction, abnormality detection, and crowd
simulation.
Read More
Video Understanding
Placeholder.
Read More
Detection and Segmentation
Our research includes object detection, semantic segmentation, instance
segmentation.
Read More
Low-level Vision
MMLAB develops efficient and effective algorithms that improve image and
video qualities. We dedicate to enhance the world we see.
Read More
Architecture and Learning
Placeholder.
Read More
‹
›
The CUHK Multimedia Lab (MMLab) is one of the pioneering institutes on deep learning. In GPU
Technology Conference (GTC)
2016, a world-wide technology summit, our lab is recognized as one of the top ten AI
pioneers,
and listed together with top research groups in the world (e.g. MIT, Stanford, Berkeley, and
Univ. of Toronto). Today, we remain one of the most active research labs in computer vision
and
deep learning, publishing over 40 papers on top conferences (CVPR/ICCV/ECCV/NIPS) every
year.
Our lab has a large group of talented students, plenty of computational resources, and
steady
financial support, and free research environment.
A Quick Glance
The Multimedia Laboratory of the Department of Information Engineering is established by
Prof.
Xiaoou Tang in July 2001.
We won the CVPR 2009 Best Paper Award. This is the first one ever from Asia.
Read more
K. He, J. Sun, and X. Tang, "Single Image Haze Removal Using Dark Channel Prior
," CVPR,
2009
Best paper awards by our lab's alumni:
Dahua Lin with his paper "Construction of Dependent Dirichlet Processes based on
Poisson
Processes", NIPS, 2010
Dong Xu with his paper "Visual Event Recognition in Videos by Learning from Web
Data",
CVPR, 2010
Huan Wang with his paper "Exact Recovery of Sparsely-Used Dictionaries", COLT,
2012
Shuicheng Yan with his papers "Dynamic Captioning: Video Accessibility
Enhancement for
Hearing Impairment" in ACM MM, 2010; "Automated Assembly of Shredded Pieces from
Multiple Photos" in ICME, 2010; "Wow! You Are So Beautiful Today!", ACM MM,
2013;
"Attributes-augmented Semantic Hierarchy for Image Retrieval", ACM MM, 2013