积分上下限无穷_数学分析|第九章 定积分利用等价无穷小量和定积分定义解决数列极限问题总结...

本文详细介绍了如何利用定积分定义和等价无穷小量来解决数列极限问题,通过具体例题展示了在无法直接应用定积分时,如何巧妙运用等价无穷小量的极限定义来求解,强调了理论依据的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当公式或文字展示不完全时,记得向左←滑动哦!

摘要: 当我们利用等价无穷小量时,不仅仅可以利用等价替换,有的时候我们需要利用极限的定义语言来解决问题,当等价无穷小量和连加数列结合在一起时,虽然很多同学都能猜到最后的答案,但是过程往往都是有瑕疵的,没有相应的理论依据,这篇文章对此了进行详细的说明,希望能够对大家有所帮助。

利用定积分定义解决数列极限回顾

函数在区间上可积,此时可得

注意:
大家注意哦,当利用定积分解决数列极限时, 首先要写成定积分的形式,找到相应的被积函数,积分的上下限,以及相邻小区间之间的距离。

无穷小量等价和定积分结合解决数列极限总结

【例1】.(2005浙江大学)
设在上可积,且

计算

分析:
此题仔细观察会发现,是没有办法利用定积分定义去解决的,有的同学会说要是没有对数函数ln该多好啊,是啊,要是没有ln,这个题解决那可是分分钟的事情,也就变成了

但问题是明明对数函数ln确实存在呀,可是有的同学会说,可以利用等价无穷小量啊,即

此时可得

此时有些同学会提出说,下面就变为了

注意哦,这样去思考是有问题的,因为等价无穷小量替换的是所求极限的因式部分,而在此题中是不满足的,不过此题要想解决,确实需要利用等价无穷小量,下面我们把步骤简单梳理一下。证明:
由于

则可得

当时有

又在上可积,则存在,使得

则对上述给定的,存在,当时,有

此时可得

此时进一步可得

进行连加可得

综上可得

此时得到

则可得

即得

总结:
大家注意哦,我们证明

利用的是等价无穷小量的极限定义语言,此时比简答的等无穷小替换更有说服力!证明思想和岩宝数学考研公众号数学分析 第五章 导数和微分--利用导数存在解决一类数列极限问题总结里面的证明方法相似,大家可以一块结合起来进行证明。

【例1】.(2012西安电子科技大学)

分析:
方法一:利用例1的思想可以解决,此时最后可以得到

方法二:进行两头放缩,然后夹逼准则也是可以的,即

进一步转化可得

可得

连加可得

由数列极限的迫敛性可得

岩宝数学考研

加入『岩宝数学考研交流答疑群』

请戳下方链接☟☟☟

岩宝数学考研交流群欢迎您的到来!(免费批改步骤、答疑等)

▼往期精彩回顾▼高等代数|3.4线性方程组的反问题数学分析|第九章 定积分--利用定积分定义解决连加和连乘数列极限问题总结应用数学370才能进复试?——西南大学

留言评论区

为小编的辛苦编辑点个“在看”嘛~d6667777781a6ae3c09d6458fec15c20.gif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值