python在多边形内随机生成点_Python随机生成均匀分布在三角形内或者任意多边形内的点 Python 生成随机点坐标...

这篇博客介绍了如何使用Python在多边形内部生成随机点坐标,包括在三角形内的点生成,并展示了利用numpy和random库实现的示例代码。此外,还探讨了如何在指定范围内生成随机浮点数、随机列表以及创建包含指定坐标的图形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python 生成随机点坐标

使用Python语言。一个列表中包含若干个点坐标,比如List = [(0,0),(1,1)import randomimport numpy as npList = np.array([(0,0),(1,1),(1.6,1.8),(3,3)])d = 0.5def get_random(low,high): return((high-low)*random.random()+low)n = 0while n= d if np.sum(tmp_dist_bool) == len(List): print(x,y) break n += 1i

请问python怎样循环取指定范围的随机浮点数?

261e00f4cbb2ae7bccc9228d262ac58c.png

怎么用Python随机生成一个列表 ,列表中的每一个数都有自己的取值范围

举例说明:从集合中随机获得10个数

定义一个列表集合iRandom = []

向iRandom中插入1-60,共60个数字

截取列表前10个数,即为随机获取到的列表集合随机数 import random iRandom = [] #定义随机数列表listRandom = list

用python随机生成(x,y,z)坐标的脚本怎么实现??

x在区间(a,b)内随机生成一个浮点数; z在区间(c,d)内随机生成一个浮点数根据x**2+z**2==25所以你的x,z 不可能是带小数的只能是整数或者整数的浮点数例如 3.0**2+4.0**2=25 或者3**2+4**2=25并且 0.0

python生成指定坐标的三角形图片

我想用python 生成一张256*256的JPEG图片,其中画一个指定坐标的三角形import Imageimpo

### 如何在不规则多边形内部生成随机 对于在不规则多边形内部生成随机的任务,通常采用两种主要策略:拒绝采样和基于三角剖分的方法。 #### 拒绝采样方法 这种方法简单直观。首先定义一个多边形边界框(即包围该多边形最小矩形),在这个矩形范围内随机选取大量样本,再通过某种方式判断哪些位于目标多边形之内。具体来说: - 随机生成一个候选 `(x,y)` ,其坐标分别落在多边形外接矩形的宽度与高度范围之间; - 使用光线投射算法来检测此是否处于给定多边形内部[^3]; - 如果判定结果为真,则保留这个作为有效样本;反之则丢弃并继续尝试新的位置直到满足数量需求为止。 Python代码如下所示: ```python import random def point_inside_polygon(x, y, poly): n = len(poly) inside = False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xinters = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xinters: inside = not inside p1x,p1y = p2x,p2y return inside def generate_random_points_in_polygon(num_points, polygon): points = [] xmin, ymin, xmax, ymax = float('inf'), float('inf'), -float('inf'), -float('inf') # 计算多边形的边界框 for vertex in polygon: if vertex[0] < xmin: xmin = vertex[0] elif vertex[0] > xmax: xmax = vertex[0] if vertex[1] < ymin: ymin = vertex[1] elif vertex[1] > ymax: ymax = vertex[1] while len(points) < num_points: candidate_x = random.uniform(xmin, xmax) candidate_y = random.uniform(ymin, ymax) if point_inside_polygon(candidate_x, candidate_y, polygon): points.append((candidate_x, candidate_y)) return points ``` #### 基于三角剖分的方法 另一种更高效但也稍微复杂一的方式是先将原始多边形分解成多个非重叠的小三角形单元,之后针对每一个小三角形独立执行均匀分布抽样的操作。这样做的好处是可以确保最终得到的结果更加接近理想状态下的“真正意义上的”均匀分布。 为了实现这一,可以借助第三方库如`shapely`来进行几何运算处理以及调用内置函数完成三角化过程。以下是简化版伪代码描述: ```python from shapely.geometry import Polygon, Point import numpy as np def triangulate_and_sample(polygon_vertices, sample_count_per_triangle): from scipy.spatial import Delaunay tri = Delaunay(np.array(polygon_vertices)) triangles = [polygon_vertices[simplex] for simplex in tri.simplices] samples = [] for triangle in triangles: area = abs(-triangle[0][0]*triangle[1][1]+triangle[0][0]*triangle[2][1]+\ triangle[1][0]*triangle[2][1]-triangle[1][0]*triangle[0][1]+\ triangle[2][0]*triangle[0][1]-triangle[2][0]*triangle[1][1])/2. r1,r2 = sorted([random.random(), random.random()]) s,t,u = 1-r1+r2*r1, r1*(1-r2),r2 new_point = tuple(sum(v*p for v,p in zip(triangle,(s,t,u)))) samples.extend([new_point]*sample_count_per_triangle) return samples[:num_samples] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值