a与a的共轭转置相乘_线性代数A矩阵乘以A的转置的含义或者几何意义

本文探讨了奇异值的推广背景,解释了奇异值的概念及其与特征值的关系,重点讲解了奇异值分解(SVD)在解决最小二乘问题中的关键作用,以及SVD与广义逆、QR分解的比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

共回答了20个问题采纳率:100%

(下面以A(T)表示A的转置.)先从奇异值说起.我个人的理解,奇异值是特征值的一种推广.因为只有方阵才可能具有特征值,对于实际遇到的一些问题(比如最小二乘问题),往往遇上长方阵,长方阵根本没有特征值.因而就有必要对特征值做推广,这就是奇异值.

再看什么是奇异值.对于任意矩阵A(甚至是非方的),A(T)A(这个时候就变成方阵了,可以算特征值了)的特征值就称为A的奇异值.奇异值有个特性,就是A(T)A和AA(T)特征值相同.证明如下:【假定A(T)A做了一个特征分解,为:A(T)A = QΣQ(T)对上式取转置,有AA(T) = QΣ(T)Q(T)显然,Σ是个对角阵,因而,Σ(T) = Σ故而,AA(T)和A(T)A有完全一致的特征分解,即共特征值】

再看特征值和奇异值的关系.对于长方阵来说,它根本不存在特征值,所以之后再讨论.对于方阵来说,容易证明,其所有奇异值恰好为其所有特征值的模长的平方(即奇异值全实非负),因而奇异值和特征值有相当良好的对应关系.证明如下:【假定方阵A有如下特征分A = QΣQ(T)则A(T)A = (QΣQ(T))(QΣQ(T)) = QΣΣQ(T)因而,A(T)A的特征值,也就是A的奇异值,恰好为A的特征值的模长的平方】【当然,对于复数域情况,里边的T要改成H,那么前一个Σ自然会带上复共轭】

再看奇异值为什么重要.我们知道,对于一个方阵来说,特征分解后,从特征值和特征向量我们就可以知道矩阵的大量性质.对于非方阵来说,我们也希望得到一个这样信息量巨大的分解,这就是奇异值分解(SVD).这个SVD分解里边左右奇异向量分别是什么你的书上肯定都有,就不写在这里了.最后看一下SVD分解和最小二乘的关系.我们知道,最小二乘有个解法,对于Ax = b的最小二乘问题,等价于求解其法方程A(T)Ax = A(T)b,这个时候就变成方阵的问题了.但是这种算法是不稳定的.一种更为有效的算法就是SVD分解并利用广义逆求解.

看一下广义逆和最小二乘、SVD的关系.广义逆可以百度一下.定义有很多式子.但是,对于可逆阵来说,广义逆就是逆.这里把A的广义逆记作A(+).则Ax = b的最小二乘解就是x = A(+)b.所以,现在的问题就是,怎么求A的广义逆A(+).通过SVD分解,广义逆可以这么求:如果A有SVD分解如下:A = VΣU(T)则A(+) = UΣV(T)当然,这里叙述可能不那么严谨.因为还涉及到Σ的形状什么的,所以两个式子的Σ形状大小不一样,形状变了,补0就行.因此,SVD分解就完美解决了最小二乘问题.-----更正---------说错了一点点,奇异值不是特征值的模长的平方,它就是模长,因为奇异值要对Σ(H)Σ对角线开算术平方根.

1年前

追问

4

688411942

那对于最小二乘法,为什么要在左右乘上A的转置进行求解呢?

688411942

那种解法称作“法方程”解法。相当于求得一个x,使得A(T)(b-Ax)=0,也就是残差与矩阵A行向量的内积为0,即残差与矩阵A的行空间正交,由投影定理,可以证明,此时残差二范数最小。以上就是法方程的几何意义。法方程的解恰好是最小二乘解还有其他更严格的证明,比如泛函式的证明。但是,法方程法不是最佳解法。一般较优解法是QR分解法以及广义逆法(配合SVD分解)。手机打字有些慢。要是还有问题可以追问,明天我电脑上再接着说。

688411942

QR分解如何做最小二乘法?

688411942

QR分解确实可以做最小二乘。但是当时我没大学明白。后来我的最小二乘一直是用SVD+广义逆做的,所以我也搞不清楚了。

<think>好的,我现在需要帮助用户解决如何计算矩阵A共轭转置矩阵乘积的逆矩阵的问题。首先,我得回顾一下相关的矩阵概念和公式,确保自己理解正确。 用户提到矩阵A自身共轭转置矩阵的乘积的逆矩阵,也就是求$(A^H A)^{-1}$。这里的$A^H$表示A的共轭转置矩阵。首先,我需要确认这个乘积矩阵性质,比如是否可逆,是否存在特殊的结构,或者是否有适用的公式或分解方法。 根据线性代数的知识,矩阵$A^H A$是一个半正定矩阵。当A是列满秩的时候,这个矩阵才是正定的,从而可逆。所以,用户的问题可能需要先确认矩阵A的秩是否满足条件,也就是A的列是否线性无关。如果A不是列满秩,那么$A^H A$不可逆,这时候可能需要用伪逆或者其他方法处理,但用户的问题可能默认A是可逆的情况。 接下来,计算逆矩阵的方法通常包括直接求逆、Cholesky分解、或者利用矩阵分解如奇异值分解(SVD)。对于正定矩阵,Cholesky分解是一种高效的方法,因为它分解后的形式更容易求逆。另外,如果矩阵A本身是方阵且可逆,可能有更直接的方法,但用户的问题中A不一定是方阵,因为共轭转置乘积通常是方阵,但原矩阵A可能是m×n的,所以结果矩阵是n×n的。 我需要考虑用户可能的矩阵类型,比如是否稀疏,是否大型,这会影响计算方法的选择。但在理论推导中,可能更关注通用的方法。例如,如果A是列满秩的,可以使用Cholesky分解,将$A^H A$分解为$LL^H$,然后逆矩阵可以通过分解后的三角矩阵求逆得到。 另外,SVD分解也是一个重要的工具。如果A的SVD为$A = U \Sigma V^H$,那么$A^H A = V \Sigma^2 V^H$,因此逆矩阵为$V \Sigma^{-2} V^H$。这可能在某些情况下更适用,特别是当涉及到数值计算或需要稳定性时。 用户可能需要具体的步骤或公式,所以需要分情况讨论:当A列满秩时,如何计算;当A不是列满秩时,如何处理。但根据问题描述,用户可能主要关注可逆的情况,即A列满秩。 另外,考虑到共轭转置的存在,矩阵的元素可能涉及复数,因此在计算过程中需要注意复数的运算规则,确保共轭转置的正确应用。 总结可能的解决步骤: 1. 确认矩阵A的列满秩性,确保$A^H A$可逆。 2. 使用Cholesky分解分解$A^H A = LL^H$,然后逆矩阵为$L^{-H} L^{-1}$。 3. 或者使用SVD分解得到逆矩阵的表达式。 4. 如果A是方阵且可逆,可能有更直接的方法,但一般情况A不一定是方阵。 还需要注意数值稳定性,特别是在实际计算中,直接计算$A^H A$可能导致条件数平方的问题,使用SVD可能更稳定。 最后,用户可能需要具体的数学公式或算法步骤,所以在回答中需要明确这些方法,并可能提到相关应用或注意事项,如矩阵的条件数、计算复杂度等。</think>要计算矩阵$A$共轭转置矩阵$A^H$的乘积的逆矩阵$(A^H A)^{-1}$,需根据矩阵特性选择合适方法,以下是分步说明: ### 一、判断矩阵可逆性 1. **列满秩条件**:当且仅当矩阵$A$列满秩(即$A$的列向量线性无关)时,$A^H A$是正定矩阵,此时其可逆[^1]。 2. **维度检查**:若$A$是$m \times n$矩阵,则$A^H A$为$n \times n$方阵,只有当$\text{rank}(A)=n$时,矩阵可逆。 ### 二、计算方法公式 #### 方法1:直接求逆(小规模矩阵) 若矩阵$A^H A$规模较小: 1. 计算共轭转置乘积:$C = A^H A$ 2. 直接求逆:$(A^H A)^{-1} = C^{-1}$ #### 方法2:Cholesky分解(正定矩阵) 利用正定矩阵的Cholesky分解: 1. 分解$A^H A = LL^H$,其中$L$为下三角矩阵 2. 求逆矩阵:$(A^H A)^{-1} = (L^H)^{-1} L^{-1}$ #### 方法3:奇异值分解(SVD,稳定性高) 1. 对$A$进行SVD分解:$A = U \Sigma V^H$,其中$\Sigma$为奇异值矩阵 2. 计算逆矩阵:$$(A^H A)^{-1} = V (\Sigma^H \Sigma)^{-1} V^H$$ ### 三、特殊情况处理 1. **秩亏缺情况**:若$A$列不满秩,需使用**伪逆(Moore-Penrose逆)**:$$(A^H A)^+ = V \Sigma^+ U^H$$ 2. **数值稳定性**:直接计算$A^H A$会增大条件数,推荐优先使用SVD方法[^5]。 ### 四、示例代码(MATLAB) ```matlab % 生成随机复数矩阵(列满秩) A = randn(5,3) + 1i*randn(5,3); % 方法1:直接求逆 C = A' * A; % 计算A^H A inv_C = inv(C); % 直接求逆 % 方法2:Cholesky分解 L = chol(C, 'lower'); inv_L = inv(L); inv_C_chol = inv_L' * inv_L; % 方法3:SVD分解 [U,S,V] = svd(A); inv_S = diag(1./diag(S'*S)); inv_C_svd = V * inv_S * V'; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值