labelimg批量标注图片_智能驾驶深度学习最全图片标注工具介绍

本文介绍了智能驾驶深度学习中用于图片标注的工具,包括Labelme、labelImg、Annotorious等多个工具,重点讲解了labelImg的安装与使用步骤,为数据集创建提供便利。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:老刘

智能驾驶的深度学习算法研究中,会用到各种研究的数据集,很多都是开源的数据集,但是在研究的过程中难免会自己建立数据集来训练或者测试自己的算法。开源的数据集一般都是国外的,拿到国内来有水土不服的可能性,比较国内的驾驶场景不是老外可以想象的。如果要建立自己的数据集,除了去造一个场景采集一些数据,图片的标注是必不可少的。本文将简要介绍标注的一个工具,以及使用方法。学会了如何使用标注软件标注,一方面对于研究者来说自力更生很方便,另一方面对于很多人来说也是一个谋生的手段,毕竟是一个劳动密集型产业,标注一张图据说也可以赚几毛钱,还是不错的。


  1. 常用的图片标注工具

图片数据标注工具汇总

1.1 Labelme:https://github.com/wkentaro/labelme ,适用于图片分割

1.2 labelImg:https://github.com/tzutalin/labelImg ,适用于图片检测(可标斜框)

1.3 Annotorious:http://annotorious.github.io/index.html ,适用于图片检测

1.4 RectLabel:https://rectlabel.com/ (适用mac,图片检测)

1.5 images_annotation_programme:

https://github.com/frederictost/images_annotation_programme (图片检测)

1.6 yolo_mark

适用于图像检测任务的数据集制作:它来自于下面的项目:https://github.com/AlexeyAB/Yolo_mark

它是yolo2的团队开源的一个图像标注工具,为了方便其他人使用yolo2训练自己的任务模型。在linux和win下都可运行,依赖opencv库。

1.7 Vatic

Vatic适

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值