python arima时间序列分析_Arima实战(下):利用Python中pyramid-arima库进行时间序列预测...

本文通过Python的pyramid-arima库展示了时间序列预测的步骤。首先介绍如何安装库,然后加载数据集并分割训练集和测试集。接着使用`auto_arima`自动搜索ARIMA模型参数,训练模型,并通过`predict`和`update`函数进行预测。最后,通过评估指标如MAE、MSE和MAPE评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 安装

pyramid-arima 的安装请见 https://pypi.org/project/pyramid-arima/

(我只在linux系统上成功安装了,windows上没有成功)

$ pip install pyramid-arima

2. 代码实例

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

import pmdarima as pm

import warnings

warnings.filterwarnings("ignore")

2.1 加载数据集

df = pd.read_csv('dataset.csv')

split_point = 1000

data_train = df['x'].iloc[:split_point].values

data_test = df['x'].iloc[split_point:].values

2.2 训练模型

pm.auto_arima可以自动搜索出arima模型中的(q, d, p)参数

p--代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做AR/Auto-Regressive项

d--代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项

q--代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项

model = pm.auto_arima(data_train)

2.3 模型预测

利用 model.predict() 函数预测

x_pred = model.predict(n_periods=1)

或更优的,使用 model.update() 函数,不断用新观测到的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值