博主联赛打铁了,就回来更博了(哭)。
今年的联赛按照大众评价似乎是 2016 之后最简单的一次,事实也确实如此吧。二试的几何题和代数题都是初中范围内的基础知识点,而数论题如果能想到在 \(\bmod m\) 跟 \(\bmod m^2\) 下搞就能很容易搞出来,组合压轴还是很困难的。
我一试爆炸了导致总分过低,二试写出了 A 和 B,而且我省改分过于严格,估计很难拿全分。分数线大家纷纷认为 120 ~ 130,所以我几乎就是打铁了。
这里先放二试题面。
Solutions
一、
一个比较基础的初中几何,首先连上 \(BD\), \(CE\),欲证 \(BC=2BP\),即证 \(BP=CM\)。
观察到 \(\triangle BPD \cong \triangle CME\),下证之;
由圆周角相等以及角分线,\(\angle BDP=\angle CEP\);
由已知 \(DP=ME\);
对 \(\triangle BPM\) 和 \(\triangle CME\) 正弦定理易证 \(BD=CE\)。
二、
首先待求式是容易按照套路化简的,\(2f\) 显然可以化作平方和的形式。
记 \(a_{-1}=a_{0}=0\),则 \(2f=\sum_{i=1}^{2018} (a_i-a_{i-2})^2 + (a_{2017}-a_{2019})^2 + a_{2018}^2 + a_{2019}^2\)。
易知对 \(x\in \text{N}\),有 \(x^2\ge x\),仅当 \(x=0\) 或 \(1\) 时取等号。
故 \(2f\ge a_{2017} + a_{2018} + (a_{2017}-a_{2019})^2 + a_{2018}^2 + a_{2019}^2\);
不妨设 \(a_{2017}=t,a_{2018}\ge t\) 据此放缩一下即:
\(2f\ge 2t + (t-99)^2 + t^2 + 99^2\)。
这是一个二次函数,当 \(t=49\) 时其最小值为 \(14800\),故 \(f\ge 7400\)。
计数一下方案,设差分数组 \(b_n=a_n-a_{n-1}\),则对于 \(3\le i\le 2017\),\(b_i\in \{0,1\}\),且对于相邻的两个 \(b_i\) 不全为 \(1\)。
插板,方案数是 \(1968\choose 48\)。
三、
注意到当 \(n>2\),\(m \mid a_n-a_{n-1}\),那么有 \(a_2\equiv a_3\equiv \dots \pmod m\)。
而题目说存在 \(a_r=a_s=a_1\),故也有 \(a_2\equiv a_1\pmod m\),反之就不存在。
设 \(a_1=k \pmod m\);
在模 \(m^2\) 意义下:\(0\equiv a_r-a_s\equiv \sum_{i=s+1}^r a_i-a_{i-1}\equiv m\sum_{i=s}^{r-1} a_i\equiv m(r-s)k \pmod {m^2}\)。
若 \(\gcd(k,m)=1\) 则必有 \(m\mid r-s\) 即得证。
这上面是整个的大致思路。
另外还要讨论当 \(m<0\) 或 \(\gcd(k,m)>1\) 或 \(a_1\equiv 0 \pmod m\) 或 \(a_2\equiv 0 \pmod m\) 的情况,都比较容易,但实际考场上需要十分严密的书写证明,感觉不太容易满分。
四、
咕咕咕