P3181 [HAOI2016]找相同字符

本文深入探讨了字符串匹配问题,特别是如何在两个字符串中寻找相同子串的方案数。通过将两个字符串拼接并插入特殊字符,利用后缀数组和最长公共前缀(LCP)阵列,提出了一种高效算法解决此问题。该方法通过单步容斥原理,从拼接字符串的贡献中减去各自字符串内部的贡献,避免重复计数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

\(\color{#0066ff}{ 题目描述 }\)

给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数。两个方案不同当且仅当这两个子串中有一个位置不同。

\(\color{#0066ff}{输入格式}\)

两行,两个字符串s1,s2,长度分别为n1,n2。1 <=n1, n2<= 200000,字符串中只有小写字母

\(\color{#0066ff}{输出格式}\)

输出一个整数表示答案

\(\color{#0066ff}{输入样例}\)

aabb
bbaa

\(\color{#0066ff}{输出样例}\)

10

\(\color{#0066ff}{数据范围与提示}\)

none

\(\color{#0066ff}{ 题解 }\)

考虑把两个串拼起来,中间隔一个无关字符
我们每次找到一个合法的LCP,显然会产生LCP所有字串的贡献,但是这样会重复
我们定住一个端点,也就是让它产生LCP长度的贡献,这样在不同后缀中一端不同,相同后缀中另一端不同
怎么统计呢?
考虑单步容斥,用拼好的串的贡献-两个串内部贡献
#include<bits/stdc++.h>
#define LL long long
LL in() {
    char ch; LL x = 0, f = 1;
    while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    return x * f;
}
const int inf = 0x7fffffff;
const int maxn = 4e5 + 5;
struct SA {
protected:
    int x[maxn], y[maxn], rk[maxn], sa[maxn], c[maxn], st[maxn];
    int top, n, m;
    LL l[maxn], r[maxn], h[maxn];
public:
    void operator () (char *s, int len) {
        n = len, m = 122;
        for(int i = 1; i <= n; i++) c[x[i] = s[i]]++;
        for(int i = 1; i <= m; i++) c[i] += c[i - 1];
        for(int i = n; i >= 1; i--) sa[c[x[i]]--] = i;
        for(int k = 1; k <= n; k <<= 1) {
            int num = 0;
            for(int i = n - k + 1; i <= n; i++) y[++num] = i;
            for(int i = 1; i <= n; i++) if(sa[i] > k) y[++num] = sa[i] - k;
            for(int i = 1; i <= m; i++) c[i] = 0;
            for(int i = 1; i <= n; i++) c[x[i]]++;
            for(int i = 1; i <= m; i++) c[i] += c[i - 1];
            for(int i = n; i >= 1; i--) sa[c[x[y[i]]]--] = y[i], y[i] = 0;
            std::swap(x, y);
            x[sa[1]] = 1, num = 1;
            for(int i = 2; i <= n; i++) 
                x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k])? num : ++num;
            if(n == num) break;
            m = num;
        }
        for(int i = 1; i <= n; i++) rk[i] = x[i];
        int H = 0;
        for(int i = 1; i <= n; i++) {
            if(rk[i] == 1) continue;
            if(H) H--;
            int j = sa[rk[i] - 1];
            while(i + H <= n && j + H <= n && s[j + H] == s[i + H]) H++;
            h[rk[i]] = H;
        }
    }
    LL getans() {
        LL ans = 0;
        h[0] = h[n + 1] = -inf;
        st[top = 1] = 0;
        for(int i = 1; i <= n; i++) {
            while(h[i] <= h[st[top]]) top--;
            l[i] = st[top];
            st[++top] = i;
        }
        st[top = 1] = n + 1;
        for(int i = n; i >= 1; i--) {
            while(h[i] < h[st[top]]) top--;
            r[i] = st[top];
            st[++top] = i;
        }
        for(LL i = 1; i <= n; i++) ans += (r[i] - i) * (i - l[i]) * h[i];
        return ans;
    }
}a, b, c;
char s[maxn], t[maxn];
int main() {
    scanf("%s", s + 1);
    scanf("%s", t + 1);
    int lens = strlen(s + 1);
    int lent = strlen(t + 1);
    a(s, lens);
    b(t, lent);
    s[++lens] = '#';
    for(int i = 1; i <= lent; i++) s[++lens] = t[i];
    c(s, lens);
    printf("%lld\n", c.getans() - a.getans() - b.getans());
    return 0;
}

转载于:https://www.cnblogs.com/olinr/p/10262201.html

# P2341 [USACO03FALL / HAOI2006] 受欢迎的牛 G ## 题目背景 本题测试数据已修复。 ## 题目描述 每头奶牛都梦想成为牛棚里的明星。被所有奶牛喜欢的奶牛就是一头明星奶牛。所有奶牛都是自恋狂,每头奶牛总是喜欢自己的。奶牛之间的“喜欢”是可以传递的——如果 $A$ 喜欢 $B$,$B$ 喜欢 $C$,那么 $A$ 也喜欢 $C$。牛栏里共有 $N$ 头奶牛,给定一些奶牛之间的爱慕关系,请你算出有多少头奶牛可以当明星。 ## 输入格式 第一行:两个用空格分开的整数:$N$ 和 $M$。 接下来 $M$ 行:每行两个用空格分开的整数:$A$ 和 $B$,表示 $A$ 喜欢 $B$。 ## 输出格式 一行单独一个整数,表示明星奶牛的数量。 ## 输入输出样例 #1 ### 输入 #1 ``` 3 3 1 2 2 1 2 3 ``` ### 输出 #1 ``` 1 ``` ## 说明/提示 只有 $3$ 号奶牛可以做明星。 【数据范围】 对于 $10\%$ 的数据,$N\le20$,$M\le50$。 对于 $30\%$ 的数据,$N\le10^3$,$M\le2\times 10^4$。 对于 $70\%$ 的数据,$N\le5\times 10^3$,$M\le5\times 10^4$。 对于 $100\%$ 的数据,$1\le N\le10^4$,$1\le M\le5\times 10^4$。 c++,不要vector,变量名小写5字符以内,需要函数:void Tarjan(int u) { dfn[u] = low[u] = ++num; //初始化结点u的dfn和low值 st[++top] = u; //将结点u压入栈中 vis[u] = 1; //标记u在栈中 for (int i = head[u]; i; i = e[i].nxt) { //枚举u的所有出边 int v = e[i].to; if (!dfn[v]) { //结点v未被访问过,说明是树枝边 Tarjan(v); low[u] = min(low[u], low[v]); } else if (vis[v]) //v在栈中,是返祖边 low[u] = min(low[u], dfn[v]); // } int tmp = 0; if (low[u] == dfn[u]) { //结点u是该强连通分量的根 ++cnt; //强连通分量数量加一 do { //将当前结点前所有还在栈空间内的结点都归为当前强连通分量 tmp = st[top--]; vis[tmp] = 0; color[tmp] = cnt; //将同一个强连通分量内的点均标记为相同编号,也可理解为染色 } while(tmp != u); } } set<pair<int, int> > mark;//记录是否连接过 void solution() { //通过tarjan算法将所有强连通分量分配编号 for (int i = 1; i <= n; i++) if (!dfn[i]) Tarjan(i); //遍历所有连边,判断相邻两个结点是否所属同一强连通分量 for (int u = 1, v; u <= n; u++) { for (int i = head[u]; i; i = e[i].nxt) { v = e[j].to; //当相邻两个结点不属于同一强连通分量,则以强连通分量编号为点建边 if (color[u] != color[v] && mark[{color[u], color[v]}].find != mark.end()) { link(color[u], color[v]); mark.insert({color[u], color[v]}); } } } }
最新发布
08-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值