python编辑距离正则匹配_详解一道腾讯面试题:编辑距离

原标题:详解一道腾讯面试题:编辑距离

来自公众号:labuladong

预计阅读时间:8 分钟

前几天在网上看到一份鹅场的面试题,算法部分大半是动态规划,最后一题就是写一个计算编辑距离的函数,今天就专门写一篇文章来探讨一下这个经典问题。

我个人很喜欢编辑距离这个问题,因为它看起来十分困难,解法却出奇得简单漂亮,而且它是少有的比较实用的算法(是的,我承认很多算法问题都不太实用)。下面先来看下题目:

513ef0a82fd939721ecd4ea77ff93cff.png

为什么说这个问题难呢,因为显而易见,它就是难,让人手足无措,望而生畏。

为什么说它实用呢,因为前几天我就在日常生活中用到了这个算法。之前有一篇公众号文章由于疏忽,写错位了一段内容,我决定修改这部分内容让逻辑通顺。但是公众号文章最多只能修改 20 个字,且只支持增、删、替换操作(跟编辑距离问题一模一样),于是我就用算法求出了一个最优方案,只用了 16 步就完成了修改。

再比如高大上一点的应用,DNA 序列是由 A,G,C,T 组成的序列,可以类比成字符串。编辑距离可以衡量两个 DNA 序列的相似度,编辑距离越小,说明这两段 DNA 越相似,说不定这俩 DNA 的主人是远古近亲啥的。

下面言归正传,详细讲解一下编辑距离该怎么算,相信本文会让你有收获。

一、思路

编辑距离问题就是给我们两个字符串s1和s2,只能用三种操作,让我们把s1变成s2,求最少的操作数。需要明确的是,不管是把s1变成s2还是反过来,结果都是一样的,所以后文就以s1变成s2举例。

前文最长公共子序列 说过,解决两个字符串的动态规划问题,一般都是用两个指针i,j分别指向两个字符串的最后,然后一步步往前走,缩小问题的规模。

设两个字符串分别为 "rad" 和 "apple",为了把s1变成s2,算法会这样进行:

c6743d77040e214af471ae8ae5222f00.gif

175c3e6cee15ffef8b60b28c7c5c9153.png

请记住这个 GIF 过程,这样就能算出编辑距离。关键在于如何做出正确的操作,稍后会讲。

根据上面的 GIF,可以发现操作不只有三个,其实还有第四个操作,就是什么都不要做(skip)。比如这个情况:

80ae9fcc12a0018ba5e44ec95b01b97b.png

因为这两个字符本来就相同,为了使编辑距离最小,显然不应该对它们有任何操作,直接往前移动i,j即可。

还有一个很容易处理的情况,就是j走完s2时,如果i还没走完s1,那么只能用删除操作把s1缩短为s2。比如这个情况:

3f60b63d574a63c3b63b6aad80a6d0b9.png

类似的,如果i走完s1时j还没走完了s2,那就只能用插入操作把s2剩下的字符全部插入s1。等会会看到,这两种情况就是算法的base case。

下面详解一下如何将这个思路转化成代码,坐稳,准备发车了。

二、代码详解

先梳理一下之前的思路:

base case 是i走完s1或j走完s2,可以直接返回另一个字符串剩下的长度。

对于每对儿字符s1[i]和s2[j],可以有四种操作:

ifs1[i] == s2[j]:

啥都别做(skip)

i, j 同时向前移动

else:

三选一:

插入(insert)

删除(delete)

替换(replace)

有这个框架,问题就已经解决了。读者也许会问,这个「三选一」到底该怎么选择呢?很简单,全试一遍,哪个操作最后得到的编辑距离最小,就选谁。这里需要递归技巧,理解需要点技巧,先看下代码:

45b9fd6b61aaab2a2b079dd5402ede90.png

下面来详细解释一下这段递归代码,base case 应该不用解释了,主要解释一下递归部分。

都说递归代码的可解释性很好,这是有道理的,只要理解函数的定义,就能很清楚地理解算法的逻辑。我们这里 dp(i, j) 函数的定义是这样的:

defdp(i, j)-> int

# 返回 s1[0..i] 和 s2[0..j] 的最小编辑距离

记住这个定义之后,先来看这段代码:

ifs1[i] == s2[j]:

returndp(i - 1, j - 1) # 啥都不做

# 解释:

# 本来就相等,不需要任何操作

# s1[0..i] 和 s2[0..j] 的最小编辑距离等于

# s1[0..i-1] 和 s2[0..j-1] 的最小编辑距离

# 也就是说 dp(i, j) 等于 dp(i-1, j-1)

如果s1[i]!=s2[j],就要对三个操作递归了,稍微需要点思考:

dp(i, j - 1) + 1, # 插入

# 解释:

# 我直接在 s1[i] 插入一个和 s2[j] 一样的字符

# 那么 s2[j] 就被匹配了,前移 j,继续跟 i 对比

# 别忘了操作数加一

46230842bf23df9d242d835fbfc06d23.gif

dp(i - 1, j) + 1, # 删除

# 解释:

# 我直接把 s[i] 这个字符删掉

# 前移 i,继续跟 j 对比

# 操作数加一

7f321e3490e90e707d98083e29d2bc7b.gif

dp(i - 1, j - 1) + 1# 替换

# 解释:

# 我直接把 s1[i] 替换成 s2[j],这样它俩就匹配了

# 同时前移 i,j 继续对比

# 操作数加一

5f629d9096420b35bbed1f2bb3e9c55b.gif

现在,你应该完全理解这段短小精悍的代码了。还有点小问题就是,这个解法是暴力解法,存在重叠子问题,需要用动态规划技巧来优化。

怎么能一眼看出存在重叠子问题呢?前文 动态规划之正则表达式有提过,这里再简单提一下,需要抽象出本文算法的递归框架:

defdp(i, j):

dp(i - 1, j - 1) #1

dp(i, j - 1) #2

dp(i - 1, j) #3

对于子问题dp(i-1,j-1),如何通过原问题dp(i,j)得到呢?有不止一条路径,比如dp(i,j)->#1和dp(i,j)->#2->#3。一旦发现一条重复路径,就说明存在巨量重复路径,也就是重叠子问题。

三、动态规划优化

对于重叠子问题呢,前文 动态规划详解介绍过,优化方法无非是备忘录或者 DP table。

备忘录很好加,原来的代码稍加修改即可:

defminDistance(s1, s2)-> int:

memo = dict # 备忘录

defdp(i, j):

if(i, j) inmemo:

returnmemo[(i, j)]

...

ifs1[i] == s2[j]:

memo[(i, j)] = ...

else:

memo[(i, j)] = ...

returnmemo[(i, j)]

returndp(len(s1) - 1, len(s2) - 1)

主要说下 DP table 的解法:

首先明确 dp 数组的含义,dp 数组是一个二维数组,长这样:

9048b56b1b1599a17d612ed1b171b821.png

dp[i][j]的含义和之前的 dp 函数类似:

defdp(i, j)-> int

# 返回 s1[0..i] 和 s2[0..j] 的最小编辑距离

dp[i-1][j-1]

# 存储 s1[0..i] 和 s2[0..j] 的最小编辑距离

有了之前递归解法的铺垫,应该很容易理解。dp 函数的 base case 是i,j等于 -1,而数组索引至少是 0,所以 dp 数组会偏移一位,dp[..][0]和dp[0][..]对应 base case。。

既然 dp 数组和递归 dp 函数含义一样,也就可以直接套用之前的思路写代码,唯一不同的是,DP table 是自底向上求解,递归解法是自顶向下求解:

2da353a1b11f18cd79499b70cafd352f.png

三、扩展延伸

一般来说,处理两个字符串的动态规划问题,都是按本文的思路处理,建立 DP table。为什么呢,因为易于找出状态转移的关系,比如编辑距离的 DP table:

60bd49443543bf05b6f681de680e223e.png

还有一个细节,既然每个dp[i][j]只和它附近的三个状态有关,空间复杂度是可以压缩成O(min(M,N))的(M,N 是两个字符串的长度)。不难,但是可解释性大大降低,读者可以自己尝试优化一下。

你可能还会问,这里只求出了最小的编辑距离,那具体的操作是什么?之前举的修改公众号文章的例子,只有一个最小编辑距离肯定不够,还得知道具体怎么修改才行。

这个其实很简单,代码稍加修改,给 dp 数组增加额外的信息即可:

// int[][] dp;

Node[][] dp;

classNode{

intval;

intchoice;

// 0 代表啥都不做

// 1 代表插入

// 2 代表删除

// 3 代表替换

}

val属性就是之前的 dp 数组的数值,choice属性代表操作。在做最优选择时,顺便把操作记录下来,然后就从结果反推具体操作。

我们的最终结果不是dp[m][n]吗,这里的val存着最小编辑距离,choice存着最后一个操作,比如说是插入操作,那么就可以左移一格:

73da0c667b0bf89a5c30efa12689e01c.png

重复此过程,可以一步步回到起点dp[0][0],形成一条路径,按这条路径上的操作编辑对应索引的字符,就是最佳方案:

ef3f22702e92ed333d901c9a8ab02c4c.png

这就是编辑距离算法的全部内容,希望本文对你有帮助。

●编号1005,输入编号直达本文返回搜狐,查看更多

责任编辑:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值