统计学习方法学习笔记(一)--极大似然估计与贝叶斯估计原理及区别

本文探讨了极大似然估计与最大后验概率两种参数估计方法的区别及联系。极大似然估计不考虑参数的先验分布,而最大后验概率则结合了先验信息。当数据量足够大时,两者趋于一致。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    

  极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。即在频率学派中,参数固定了,预测

值也就固定了。最大后验概率是贝叶斯学派在完全贝叶斯不一定可行后采用的一种近似手。如果数据量足够大,最大后验概率和最大似

然估计趋向于一致,如果数据为0,最大后验仅由先验决定。

  极大似然估计是想让似然函数极大化,而考虑了最大后验概率算法的贝叶斯估计,其实是想让后验概率极大化。主要区别在于估计

参数中,一个考虑了先验一个没有考虑先验。

转载于:https://www.cnblogs.com/zjh225901/p/7495505.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值