Proximal Algorithms--Fixed points

本文探讨了近端操作的概念及其在固定点算法中的应用,包括近端平均和莫罗分解等内容。近端操作是一种重要的工具,在优化问题中用于寻找函数的最小化点。莫罗分解则揭示了近端操作与其对偶之间的内在联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.3 Fixed points

近端操作:

proxf(v)=argminx(f(x)+(1/2)||xv||22)(1.1)

当前仅当:
x=proxf(x)

即一个点经过近端操作后是其本身,那么点x最小化函数f,我们称xproxf的一个固定点(a fixed point).
Fiex point algorithms.固定点算法
因为函数f的最小化点是proxf固定点,因此我们可以找到函数近端操作的固定点来最小化函数f。如果proxf收缩操作(if proxf were a contraction ),也就是说,Lipschitz continuous 中的常数小与1,那么重复的应用proxf可以找到一个的固定点(在这里是唯一的)。实际上,proxf没有必要是一个收缩操作(除非函数f是强凸的),其拥有一个不同的属性:firm nonexpansiveness(严格非增大),对于固定点的迭代该条件是足够的:
||proxf(x)proxf(y)||22(xy)T(proxf(x)proxf(y))

对于所有的x,yRn.
Firmly nonexpansiveness operators是nonexpansiveness operators(其Lipschitz continuous常数为1)的一个特例。一般的非增大操作的迭代不一定收敛到一个固定的点,如I或者旋转。然而,实际上,如果N是非增大的,那么操作T=(1α)I+αNN拥有同样的固定点,并且随着T的简单的迭代将收敛到T的一个固定点(N也是这个),其中α(0,1),也就是说,序列:
xk+1:=(1α)xk+αN(xk)

将收敛到N的一个固定点。换句话说,一个非增大操作的阻尼迭代将收敛到其的一个固定点。
αaveraged perators:
操作符形式为:
(1α)I+αN

其中N是非增大(非扩展)的,α(0,1)
averagedcontractionfirm nonexpansions,三个operators的关系:
1. contraction和firm nonexpansions是averaged operator的子集。
2. 这三个都是 nonexpansive operator的子集。

Averaged operator:
averaged操作很有用,因为它们满足一些属性,这些属性适合设计固定点方法,并且因为平均操作是contraction和firm nonexpansion的一个common father。例如:averaged操作满足组合操作的闭合性,而firm nonexpansions不满足组合操作的闭合性。也就是说firm nonexpansions的组合操作不一定是firm nonexpansion,但是总是averaged。上面提到,一个averaged 操作的迭代将收敛到一个固定点(如何存在的话,其是Krasnoselskii-Mann理论的一个结论)。那么假定T是一个avergaed操作,并且存在一个固定点,定义任意初始点x0的迭代:

xk+1:=T(xk)

那么随着k,||T(xk)xk||0,并且xk收敛到T的一个固定点。
那么我们可以得到最简单近端算法:
xk+1:=proxλf(xk)

其称为proximal minimization或者proximal point algorithm.

2.4 Proximal average

f1,...,fm是一些适当的闭凸函数。那么我们有:

1mi=1mproxfi=proxg

其中函数g称为f1,...,fm的proximal average.话句话说,一组函数近端操作的平均是某个函数本身的近端操作。该操作很基础,通常出现在并行近端算法中。

Moreau decomposition-莫罗分解

莫罗分解描述了近端操作和对偶之间的关系。
下面的关系总是成立的:

v=proxf(v)+proxf(v)(2.4)

其中f(y)=supx(yTxf(x)),是函数f的convex conjugate(凸共轭).公式(2.4)称为莫罗分解。
莫罗分解可以看做是通过一个子空间导出的正交分解的推广。如果L是一个子空间,那么它的正交补(orthogonal complement)是:
L={y|yTx=0 for all xL}

并且,对于任意的v,我们有:
v=ΠL(v)+ΠL(v)

推导
将公式(1.1)带入到公式(2.4):
v=proxf(v)+proxf(v)

=argminx(f(x)+(1/2)||xv||22)+argminy(supx(yTxf(x))+(1/2)||xv||22)

令函数f(x)为示性函数,并且假设xy正交,则上面的公式变为:
=argminx(12||xv||22)+argminy(12||yv||22)

=ΠL(v)+ΠL(v)

类似地,当函数f是闭凸锥K上的示性函数时,我们有:
v=ΠK(v)+ΠK(v)

其中:
K={y|yTx0 for all xK}

polar cone,其是dual cone的negative(相反部分),其中dual cone如下:
K={y|yTx0 for all xK}

莫罗分解给出了一个简单的根据f的近端操作来获得函数f的近端操作的方式。例如,f=||||是一个普通的范数,那么f=IB,其中:

B={x|||x||1}

是对偶函数||||的单位球,定义如下:
||z||=sup{zTx| ||x||1}

通过莫罗分解,其变为:
v=proxf(v)+ΠB(v)

换句话说,如果我们知道如何投影到B,那么可以很容易的计算proxf.

转载于:https://www.cnblogs.com/raby/p/5886698.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值