PAT 1062 最简分数

本文介绍了一个算法问题,即给定两个不相等的正分数和一个正整数分母K,如何找出这两个分数之间所有分母为K的最简分数,并按升序排列。文章提供了一段C++代码实现这一功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://pintia.cn/problem-sets/994805260223102976/problems/994805268334886912

 

一个分数一般写成两个整数相除的形式:/,其中 M 不为0。最简分数是指分子和分母没有公约数的分数表示形式。

现给定两个不相等的正分数 / 和 /,要求你按从小到大的顺序列出它们之间分母为 K 的最简分数。

输入格式:

输入在一行中按 / 的格式给出两个正分数,随后是一个正整数分母 K,其间以空格分隔。题目保证给出的所有整数都不超过 1000。

输出格式:

在一行中按 / 的格式列出两个给定分数之间分母为 K 的所有最简分数,按从小到大的顺序,其间以 1 个空格分隔。行首尾不得有多余空格。题目保证至少有 1 个输出。

输入样例:

7/18 13/20 12

输出样例:

5/12 7/12


#include <bits/stdc++.h>

using namespace std;

int a[1111],b[1111];

int gcd(int a,int b)
{
    int c=a%b;
    while(c)
    {
        a=b;
        b=c;
        c=a%b;
    }
    return b;
}

int main()
{
    int N1,N2,M1,M2,K;
    scanf("%d/%d %d/%d %d",&N1,&M1,&N2,&M2,&K);
    int cnt=1;
    int ans=0;
    if(N1*M2>N2*M1)
    {
        swap(N1,N2);
        swap(M1,M2);
    }
    for(int i=1; i<=1000; i++)
    {
        if(N1*K<M1*i&&M2*i<N2*K)
            a[cnt++]=i;
    }
    for(int i=1; i<cnt; i++)
    {
        if(gcd(a[i],K)==1)
        {
            ans++;
            if(ans>1)
            printf(" %d/%d",a[i],K);
            else
                printf("%d/%d",a[i],K);
        }
    }
    return 0;
}

  

转载于:https://www.cnblogs.com/zlrrrr/p/9339626.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值