再谈欧拉函数

本文深入探讨了欧拉函数的数学原理,包括其定义、性质及其在数论中的应用,并提供了两种不同的代码实现方式,帮助读者理解如何在实际编程中计算欧拉函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧拉函数证明:

  小于等于n的基数有n个,讨论所有n的素因子,只要是素因子的倍数的是都不是n的互质数。

首先如果如果n为素数那么,φ(n)=n-1;

如果n不是素数,只要除去n的质因子和n的质因子的倍数就可以了,①因为任意一个数都能表示成若干个素数的乘积,所以只要除去质因子的以及倍数就够可以了,因为如果出去的不是质因子,那么这个因子还能继续被分解成若干个质因子的乘积又能被n整除,综上那么就有基数n减去所有是质因子倍数的个数,然后加上任意两个,减三个,加四个…质因子积的倍数(容斥定理),②φ(n)=n-n/p1-n/p2-n/p3-n/p4….-n/pn+n/(p1*p2)+n/(p1*p3)…(容斥定理),所以②式得出的就是所有的互质数的个数。可化简为φ(n)=n*(1-1/p1) *(1-1/p2) *(1-1/p3)…*(1-1/pk);

 

①式证明:当n=2时,显然成立;

                假设当n=k时成立;

                那么当n=k+1时,如果n是素数那么显然成立,如果不是素数那么n一定能分解成两个数的乘积,又因为n=k时是成立的,所有综上所述结论成立

另外欧拉函数还有两条重要的性质,可以快速求出欧拉函数的值(a为N的质因素)

  若( N%a ==0&&(N/a)%a ==0)则有:E(N)= E(N/a)*a;

  若( N%a ==0&&(N/a)%a !=0)则有:E(N)= E(N/a)*(a-1);

欧拉函数代码:

int Eular(int n)
{
	int ans = n;
	for (int i = 2 ; i * i <= n ; i++)
	{
		if (n % i == 0)
		{
			ans -= ans / i;
			while (n % i == 0)
				n /= i;
		}
	}
	if (n > 1)
		ans -= ans / n;
	return ans;
}

另一个版本: 

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;
int oula(int x)
{
	int res=1;
	//x为素数时 
	//不断去找素因子及素因子的倍数 
	for(int t=2;t*t<=x;t++)
	{
		if(x%t==0)
		{
		x/=t;
		res*=t-1;
		while(x%t==0)
		{
			x/=t;
			res*=t;
		}
	    }
	}
	//x为合数时 
	if(x>1)
	res*=x-1;
	
	return res;
}

int main()
{
	int n;
	cin>>n;
	cout<<oula(n)<<endl;
	
	return 0;
}

 

转载于:https://www.cnblogs.com/Staceyacm/p/10781946.html

### 欧拉函数的数学定义 欧拉函数是一种重要的数论函数,用于描述小于或等于某个正整数 \( n \) 的数中与 \( n \) 互质的数的个数。其符号通常表示为 \( \varphi(n) \)[^1]。 具体来说,如果给定一个正整数 \( n \),则欧拉函数 \( \varphi(n) \) 表示满足条件 \( \gcd(i, n) = 1 \) 的所有正整数 \( i \)(\( 1 \leq i \leq n \))的数量[^2]。 #### 基本性质 1. 如果 \( n = p^k \),其中 \( p \) 是素数且 \( k \geq 1 \),那么 \( \varphi(n) = p^k - p^{k-1} \)[^3]。 2. 若两个正整数 \( n \) 和 \( m \) 互质 (\( \gcd(n, m) = 1 \)),则有 \( \varphi(nm) = \varphi(n) \cdot \varphi(m) \)[^3]。 3. 对于任何正整数 \( n \),可以利用唯一分解定理得到: \[ \varphi(n) = n \prod_{p|n}\left(1 - \frac{1}{p}\right), \] 其中 \( p \) 是 \( n \) 的不同质因数[^4]。 --- ### 编程实现 以下是基于上述公式的 Python 实现: ```python def euler_phi(n): result = n # 初始化结果为 n factor = 2 # 开始寻找因子 while factor * factor <= n: # 只需遍历到 sqrt(n) if n % factor == 0: # 找到了一个因子 while n % factor == 0: # 移除该因子的所有幂次 n //= factor result -= result // factor # 更新结果 factor += 1 if n > 1: # 如果剩下的部分大于 1,则它是一个质因子 result -= result // n return result ``` 此代码通过逐步移除 \( n \) 中所有的质因数并应用公式计算 \( \varphi(n) \)[^5]。 --- ### 示例运行 假设输入 \( n = 10 \): 执行过程如下: 1. 初始状态:`result = 10`, `factor = 2`. 2. 发现 \( 10 \% 2 = 0 \), 将 \( 10 \div 2 = 5 \). 3. 更新 `result`: `result = result - result // 2 = 10 - 5 = 5`. 4. 继续检查下一个可能的因子. 5. 当前剩余值为 \( 5 \). 因为其本身是质数,更新 `result`: `result = result - result // 5 = 5 - 1 = 4`. 最终返回的结果为 \( \varphi(10) = 4 \). ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值